Power Series Sequence (E&M)

The first three activities provide an active-engagement version of the canonical mathematical and geometric fundamentals for power series. The subsequent activities apply these ideas to physical situations that are appropriate for an upper-division electromagnetism course, using concepts, terminology, and techniques that are common among physicists, but not often taught in mathematics courses. In particular students use the memorized formula for the binomial expansion to evaluate various electrostatic and magnetostatic field in regions of high symmetry. By factoring out a physical quantity which is large compared to another physical quantity, they manipulate the formulas for these fields into a form where memorized formulas apply. The results for the different regions of high symmetry are compared and contrasted. A few homework problems that emphasize the meaning of series notation are included.

Note: The first two activities are also included in Power Series Sequence (Mechanics) and can be skipped in E&M if already taught in Mechanics.

1. Activity: Calculating Coefficients for a Power Series

This activity starts with a brief lecture introduction to power series and a short derivation of the formula for calculating the power series coefficients.

\[c_n={1\over n!}\, f^{(n)}(z_0)\]

Students use this formula to compute the power series coefficients for a \(\sin\theta\) (around both the origin and (if time allows) \(\frac{\pi}{6}\)). The meaning of these coefficients and the convergence behavior for each approximation is discussed in the whole-class wrap-up and in the follow-up activity: Visualization of Power Series Approximations.

2. Activity: Visualization of Power Series Approximations
Students use prepared Sage code or a prepared Mathematica notebook to plot \(\sin\theta\) simultaneously with several terms of a power series expansion to judge how well the approximation fits. Students can alter the worksheet to change the number of terms in the expansion and even to change the function that is being considered. Students should have already calculated the coefficients for the power series expansion in a previous activity, Calculating Coefficients for a Power Series.
6. Activity: Electrostatic Potential Due to a Pair of Charges (with Series)
  • The superposition principle for the electrostatic potential;
  • How to calculate the distance formula \(\frac{1}{|\vec{r} - \vec{r}'|}\) for a simple specific geometric situation;
  • How to calculate the first few terms of a (binomial) power series expansion by factoring out the dimensionful quantity which is large;
  • How the symmetries of a physical situation are reflected in the symmetries of the power series expansion.
8. Activity: Electrostatic Potential Due to a Ring of Charge

Students work in small groups to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

9. Activity: Electric Field Due to a Ring of Charge

Students work in small groups to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

10. Activity: Magnetic Vector Potential Due to a Spinning Charged Ring

Students work in small groups to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

11. Activity: Magnetic Field Due to a Spinning Ring of Charge

Students work in small groups to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.