Energy, Entropy, and Probabilities

  • Energy Entropy Probabilities Thermodynamic identity
  • The goal of this problem is to show that once we have maximized the entropy and found the microstate probabilities in terms of a Lagrange multiplier \(\beta\), we can prove that \(\beta=\frac1{kT}\) based on the statistical definitions of energy and entropy and the thermodynamic definition of temperature embodied in the thermodynamic identity.

    The internal energy and entropy are each defined as a weighted average over microstates: \begin{align} U &= \sum_i E_i P_i & S &= -k_B\sum_i P_i \ln P_i \end{align}: We saw in clase that the probability of each microstate can be given in terms of a Lagrange multiplier \(\beta\) as \begin{align} P_i &= \frac{e^{-\beta E_i}}{Z} & Z &= \sum_i e^{-\beta E_i} \end{align} Put these probabilities into the above weighted averages in order to relate \(U\) and \(S\) to \(\beta\). Then make use of the thermodynamic identity \begin{align} dU = TdS - pdV \end{align} to show that \(\beta = \frac1{kT}\).