Contemporary Challenges 2021
Students sketch the temperature-dependent heat capacity of molecular nitrogen. They apply the equipartition theorem and compute the temperatures at which degrees of freedom “freeze out.”
For N2 gas molecules in a 10 cm cubic box, the rules of QM dictate the discrete allowed values for:
- Translational K.E. in one dimension:
\(\left\{ 1\times 10^{-40}\text{ J},
4\times 10^{-40}\text{ J},
9\times 10^{-40}\text{ J}, \ldots
\right\}\)
- Rotational K.E.:
\(\left\{ 0\text{ J},
0.8\times 10^{-22}\text{ J},
0.8\times 10^{-22}\text{ J},
0.8\times 10^{-22}\text{ J},
2.5\times 10^{-22}\text{ J}, \ldots
\right\}\)
- Vibrational energy:
\(\left\{ 2.3\times 10^{-20}\text{ J},
6.9\times 10^{-20}\text{ J},
11.5\times 10^{-20}\text{ J}, \ldots
\right\}\)
Sketch a graph of \(\frac{dU}{dT}\) of \(10^{22}\) molecules of N2 gas in the temperature range of 70 K (the temperature at which \(N_2\) becomes liquid at 1 atm of pressure) to 5000 K (at which temperature N2 breaks apart).
(use a logarithmic temperature axis)
- Keywords
- equipartition quantum energy levels
- Learning Outcomes
-