This is the first activity relating the surfaces to the corresponding contour diagrams, thus emphasizing the use of multiple representations.
Students work in small groups to interpret level curves representing different concentrations of lead.
On your Mark: You work for Granite Falls, a town which needs to move a playground due to harmful levels of lead (Pb) in the ground. The surface's height represents the concentration of lead (in \(\frac{\mathrm{g}}{\mathrm{m}^2}\)) in the topsoil at every location in Granite Falls. Lead levels range from \(0.5 \frac{\mathrm{g}}{\mathrm{m}^2}\) to \(6\frac{g}{m^2}\).
Get Set: Granite Falls is a \(10~\mathrm{km} \times 10~\mathrm{km}\) town in the \(15.5~\mathrm{km}\times 21.5~\mathrm{km}\) Rock County. Find where the town is located in the county and place it there. Explain how you know you found the right location.
Go: The park measures \(20~\mathrm{m} \times 20~\mathrm{m}\) at the red star. Determine the total mass of lead at the current location. Give units.
Challenge: The town wants to guarantee the total amount of lead in the park is less than \(600~\mathrm{g}\). Find a location near the red star that achieves this level. Explain how you found this new location.
Copyright 2014 by The Raising Calculus Group