Part I
Using the applet at Inner Products of Functions:
Part II
Use the applet to find the values of the following integrals for integer \(m\) and \(m'\): \begin{align*} &\int_0^{2\pi} \sin mx\;\sin m'x \;dx\\[12pt] & \int_0^{2\pi} \sin mx\;\cos m'x \;dx\\[12pt] &\int_0^{2\pi} \cos mx\;\cos m'x \;dx \end{align*}
Part III
Do a simple change of variables in your integrals to convince yourself of the following:
For integer \(m\) and \(m'\) \begin{align*} &\int_0^L \sin\tfrac{2\pi mx}{L}\;\sin\tfrac{2\pi m'x}{L} \;dx= \begin{cases}\frac{L}{2} \mbox{ if } m = m'\\ 0 \mbox{ if } m \neq m'\end{cases}\\[12pt] & \int_0^L \sin\tfrac{2\pi mx}{L}\;\cos\tfrac{2\pi m'x}{L} \;dx= \begin{cases}0 \mbox{ if } m= m'\\ 0 \mbox{ if } m \neq m'\end{cases}\\[12pt] &\int_0^L \cos\tfrac{2\pi mx}{L}\;\cos\tfrac{2\pi m'x}{L} \;dx= \begin{cases}\frac{L}{2} \mbox{ if } m= m'\neq 0\\ L \mbox{ if } m=m'=0\\0 \mbox{ if } m \neq m'\end{cases}\\[12pt] \end{align*} Hint: Recall that the function transformation \(f(x)\rightarrow f(\alpha x)\) shrinks or expands the function \(f(x)\) along the \(x\)-axis. See GMM: Function Transformations
Part IV
Compare your results for sines and cosines integrated over a whole period (this example) to what you know about the energy eigenstates of a quantum infinite square well, i.e. compare to a known example. How are these examples the same or different? Can you use the applet to explore the infinite square well case?