Activity: Quantum Reference Sheet

Central Forces 2023 (6 years)

1-D Particle-in-a-box

Eigenstates: \begin{align} \left|{n}\right\rangle &\doteq\sqrt{\frac{2}{L}}\, \sin\frac{n\pi x}{L}\\ n&=\left\{1, 2, 3, \dots\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{n}\right\rangle &=\frac{\pi^2\hbar^2}{2\mu L^2}\, n^2 \left|{n}\right\rangle \\ \end{align}

Particle-on-a-Ring

Eigenstates: \begin{align} \left|{m}\right\rangle &\doteq\frac{1}{\sqrt{2\pi r_0}}\, e^{im\phi}\\ m&=\left\{\dots 2, 1, 0, -1, -2, \dots\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{m}\right\rangle &=\frac{\hbar^2}{2I}\, m^2 \left|{m}\right\rangle \\ \hat{L}^2\left|{m}\right\rangle &=\hbar^2\, m^2 \left|{m}\right\rangle \\ \hat{L}_z\left|{m}\right\rangle &=\hbar\, m \left|{m}\right\rangle \end{align}

1-D Harmonic Oscillator

Eigenstates: \begin{align} \left|{n}\right\rangle &\doteq\left(\frac{m\omega}{\pi\hbar}\right)^{1/4}\frac{1}{\sqrt{2^n n!}} H_n(\xi)\, e^{-\xi^2/2}\\ \xi&=\sqrt{\frac{m\omega}{\hbar}}\, x\\ n&=\left\{0, 1, 2, 3, \dots\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{n}\right\rangle &=\hbar\omega\left(n+\frac{1}{2}\right) \left|{n}\right\rangle \\ \end{align}

2-D Particle-in-a-Box

Eigenstates: \begin{align} \left|{mn}\right\rangle &\doteq\sqrt{\frac{2}{L_x}}\sqrt{\frac{2}{L_y}}\, \sin\frac{m\pi x}{L_x}\sin\frac{n\pi y}{L_y}\\ m&=\left\{1, 2, 3, \dots\right\}\\ n&=\left\{1, 2, 3, \dots\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{mn}\right\rangle &=\frac{\pi^2\hbar^2}{2\mu}\, \left(\frac{m^2}{L_x^2}+\frac{n^2}{L_y^2}\right) \left|{mn}\right\rangle \\ \end{align}

Particle-on-a-Sphere

Eigenstates: \begin{align} \left|{\ell m}\right\rangle &\doteq Y_{\ell}^m(\theta, \phi)\\ &=(-1)^{\frac{m+|m|}{2}}\sqrt{\frac{2\ell+1}{4\pi}\frac{(\ell-m)!}{(\ell+m)!}} \,P_{\ell}^m(\cos\theta)\, e^{im\phi}\\ \ell&=\left\{0, 1, 2, \dots\right\}\\ m&=\left\{\ell, \dots , 0, \dots,-\ell\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{\ell m}\right\rangle &=\frac{\hbar^2}{2I}\, \ell(\ell+1) \left|{\ell m}\right\rangle \\ \hat{L}^2\left|{\ell m}\right\rangle &=\hbar^2\, \ell(\ell+1) \left|{\ell m}\right\rangle \\ \hat{L}_z\left|{\ell m}\right\rangle &=\hbar\, m \left|{\ell m}\right\rangle \end{align}

3-D Particle-in-a-Box

Eigenstates: \begin{align} \left|{mnp}\right\rangle &\doteq\sqrt{\frac{2}{L_x}}\sqrt{\frac{2}{L_y}}\sqrt{\frac{2}{L_z}}\, \sin\frac{m\pi x}{L_x}\sin\frac{n\pi y}{L_y}\sin\frac{p\pi z}{L_z}\\ m&=\left\{1, 2, 3, \dots\right\}\\ n&=\left\{1, 2, 3, \dots\right\}\\ p&=\left\{1, 2, 3, \dots\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{mnp}\right\rangle &=\frac{\pi^2\hbar^2}{2\mu}\, \left(\frac{m^2}{L_x^2}+\frac{n^2}{L_y^2}+\frac{p^2}{L_z^2}\right) \left|{mnp}\right\rangle \\ \end{align}

Hydrogen Atom

Eigenstates: \begin{align} \left|{n\ell m}\right\rangle &\doteq R_{n\ell}(r)\, Y_{\ell}^m(\theta, \phi)\\ &=-\sqrt{\left(\frac{2Z}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n[(n+\ell)!]^3}} \left(\frac{2\rho}{n}\right)^{\ell}\, e^{-\frac{\rho}{n}}\, L_{n+\ell}^{2\ell+1}{\scriptstyle{\left(\frac{2\rho}{n}\right)}} (-1)^{\frac{m+|m|}{2}} \sqrt{\frac{2\ell+1}{4\pi}\frac{(\ell-m)!}{(\ell+m)!}} \,P_{\ell}^m(\cos\theta)\, e^{im\phi}\\ \rho&=\frac{Zr}{a_0}\\ n&=\left\{1, 2, 3,\dots\right\}\\ \ell&=\left\{0, 1, 2, \dots, n-1\right\}\\ m&=\left\{\ell, \dots , 0, \dots,-\ell\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{n\ell m}\right\rangle &=-\frac{1}{2}\left(\frac{Ze^2}{4\pi\epsilon_0}\right)^2 \frac{\mu}{\hbar^2}\,\frac{1}{n^2}\, \left|{n \ell m}\right\rangle \\ &=-13.6 \text{eV}\,\frac{1}{n^2}\, \left|{n \ell m}\right\rangle \\ \hat{L}^2\left|{n \ell m}\right\rangle &=\hbar^2\, \ell(\ell+1) \left|{n \ell m}\right\rangle \\ \hat{L}_z\left|{n \ell m}\right\rangle &=\hbar\, m \left|{n \ell m}\right\rangle \end{align}

  • group Raising and Lowering Operators for Spin

    group Small Group Activity

    60 min.

    Raising and Lowering Operators for Spin
    Central Forces 2023 (2 years)
  • assignment Quantum Particle in a 2-D Box

    assignment Homework

    Quantum Particle in a 2-D Box
    Central Forces 2023 (3 years) You know that the normalized spatial eigenfunctions for a particle in a 1-D box of length \(L\) are \(\sqrt{\frac{2}{L}}\sin{\frac{n\pi x}{L}}\). If you want the eigenfunctions for a particle in a 2-D box, then you just multiply together the eigenfunctions for a 1-D box in each direction. (This is what the separation of variables procedure tells you to do.)
    1. Find the normalized eigenfunctions for a particle in a 2-D box with sides of length \(L_x\) in the \(x\)-direction and length \(L_y\) in the \(y\)-direction.
    2. Find the Hamiltonian for a 2-D box and show that your eigenstates are indeed eigenstates and find a formula for the possible energies
    3. Any sufficiently smooth spatial wave function inside a 2-D box can be expanded in a double sum of the product wave functions, i.e. \begin{equation} \psi(x,y)=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\; \hbox{eigenfunction}_n(x)\;\hbox{eigenfunction}_m(y) \end{equation} Using your expressions from part (a) above, write out all the terms in this sum out to \(n=3\), \(m=3\). Arrange the terms, conventionally, in terms of increasing energy.

      You may find it easier to work in bra/ket notation: \begin{align*} \left|{\psi}\right\rangle &=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\left|{n}\right\rangle \left|{m}\right\rangle \\ &=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\left|{nm}\right\rangle \end{align*}

    4. Find a formula for the \(c_{nm}\)s in part (b). Find the formula first in bra ket notation and then rewrite it in wave function notation.
  • group Applying the equipartition theorem

    group Small Group Activity

    30 min.

    Applying the equipartition theorem
    Contemporary Challenges 2022 (4 years)

    equipartition theorem

    Students count the quadratic degrees of freedom of a few toy molecules to predict their internal energy at temperature \(T\).
  • group Matrix Representation of Angular Momentum

    group Small Group Activity

    10 min.

    Matrix Representation of Angular Momentum
    Central Forces 2023 (2 years)
  • group Hydrogen Probabilities in Matrix Notation

    group Small Group Activity

    30 min.

    Hydrogen Probabilities in Matrix Notation
    Central Forces 2023 (2 years)
  • assignment Diatomic hydrogen

    assignment Homework

    Diatomic hydrogen
    rigid rotor hamiltonian angular momentum ground state hydrogen diatomic probability Energy and Entropy 2021 (2 years)

    At low temperatures, a diatomic molecule can be well described as a rigid rotor. The Hamiltonian of such a system is simply proportional to the square of the angular momentum \begin{align} H &= \frac{1}{2I}L^2 \end{align} and the energy eigenvalues are \begin{align} E_{\ell m} &= \hbar^2 \frac{\ell(\ell+1)}{2I} \end{align}

    1. What is the energy of the ground state and the first and second excited states of the \(H_2\) molecule? i.e. the lowest three distinct energy eigenvalues.

    2. At room temperature, what is the relative probability of finding a hydrogen molecule in the \(\ell=0\) state versus finding it in any one of the \(\ell=1\) states?
      i.e. what is \(P_{\ell=0,m=0}/\left(P_{\ell=1,m=-1} + P_{\ell=1,m=0} + P_{\ell=1,m=1}\right)\)

    3. At what temperature is the value of this ratio 1?

    4. At room temperature, what is the probability of finding a hydrogen molecule in any one of the \(\ell=2\) states versus that of finding it in the ground state?
      i.e. what is \(P_{\ell=0,m=0}/\left(P_{\ell=2,m=-2} + P_{\ell=2,m=-1} + \cdots + P_{\ell=2,m=2}\right)\)

  • assignment Find Force Law: Spiral Orbit

    assignment Homework

    Find Force Law: Spiral Orbit
    Central Forces 2023 (3 years)

    In science fiction movies, characters often talk about a spaceship “spiralling in” right before it hits the planet. But all orbits in a \(1/r^2\) force are conic sections, not spirals. This spiralling in happens because the spaceship hits atmosphere and the drag from the atmosphere changes the shape of the orbit. But, in an alternate universe, we might have other force laws.

    Find the force law for a central-force field that allows a particle to move in a spiral orbit given by \(r=k\phi^2\), where \(k\) is a constant.

  • assignment Find Force Law: Logarithmic Spiral Orbit

    assignment Homework

    Find Force Law: Logarithmic Spiral Orbit
    Central Forces 2023 (3 years)

    In science fiction movies, characters often talk about a spaceship “spiralling in” right before it hits the planet. But all orbits in a \(1/r^2\) force are conic sections, not spirals. This spiralling in happens because the spaceship hits atmosphere and the drag from the atmosphere changes the shape of the orbit. But, in an alternate universe, we might have other force laws.

    Find the force law for a mass \(\mu\), under the influence of a central-force field, that moves in a logarithmic spiral orbit given by \(r = ke^{\alpha \phi}\), where \(k\) and \(\alpha\) are constants.

  • group Heat capacity of N$_2$

    group Small Group Activity

    30 min.

    Heat capacity of N2
    Contemporary Challenges 2022 (4 years)

    equipartition quantum energy levels

    Students sketch the temperature-dependent heat capacity of molecular nitrogen. They apply the equipartition theorem and compute the temperatures at which degrees of freedom “freeze out.”
  • computer Visualization of Quantum Probabilities for the Hydrogen Atom

    computer Mathematica Activity

    30 min.

    Visualization of Quantum Probabilities for the Hydrogen Atom
    Central Forces 2023 (3 years) Students use Mathematica to visualize the probability density distribution for the hydrogen atom orbitals with the option to vary the values of \(n\), \(\ell\), and \(m\).

Learning Outcomes