Consider the following normalized quantum state on a unit ring (\(r_0 = 1\)): \begin{equation} \Phi(\phi)=\sqrt\frac{8}{3 \pi } \sin^{2}\left( 3\,\phi \right)\cos \left( \phi \right) \end{equation}
Translate this state into eigenfunction, bra/ket, and matrix representations. Remember that you can use any of these representations in the following calculations.
- What is the probability that the particle can be found in the region \(0<\phi< \frac{\pi}{4}\)? In the region \(\frac{\pi}{4}<\phi< \frac{3 \pi}{4}\)?
- What is the expectation value of \(L_z\) in this state?
- The wave function and it's probability density are plotted below. What features of these graphs (if any) tell you the expectation value of \(L_z\) in this state?
assignment Homework
The following are 3 different representations for the \(\textbf{same}\) state on a quantum ring for \(r_0=1\) \begin{equation} \left|{\Phi_a}\right\rangle = i\sqrt{\frac{ 2}{12}}\left|{3}\right\rangle - \sqrt{\frac{ 1}{12}}\left|{1}\right\rangle +\sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}}\left|{0}\right\rangle -i\sqrt{\frac{ 2}{ 12}}\left|{-1}\right\rangle +\sqrt{\frac{ 4}{12}}\left|{-3}\right\rangle \end{equation} \begin{equation} \left| \Phi_b\right\rangle \doteq \left( \begin{matrix} \vdots \\ i\sqrt{\frac{ 2}{12}}\\ 0 \\ -\sqrt{\frac{ 1}{12}} \\ \sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}} \\ -i\sqrt{\frac{ 2}{12}}\\ 0 \\ \sqrt{\frac{4}{12} }\\ \vdots \end{matrix}\right) \begin{matrix} \leftarrow m=0 \end{matrix} \end{equation} \begin{equation} \Phi_c(\phi) \doteq \sqrt{\frac{1}{24 \pi}} \left( i\sqrt{2}e^{i 3 \phi} -e^{i\phi} +\sqrt{3}e^{i\frac{\pi}{4}} -i \sqrt{2} e^{-i\phi} + \sqrt{4}e^{-i 3 \phi} \right) \end{equation}
If you measured the energy of the state to be \(\frac{9}{2}\frac{\hbar^2}{I}\), what would the state of the particle be immediately after the measurement is made?
group Small Group Activity
30 min.
group Small Group Activity
30 min.
central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.assignment Homework
Find \(N\).
assignment_ind Small White Board Question
5 min.
assignment Homework
assignment Homework