## Activity: Wavefunctions on a Quantum Ring

Central Forces 2023 (2 years)

Consider the following normalized quantum state on a unit ring ($r_0 = 1$): \begin{equation} \Phi(\phi)=\sqrt\frac{8}{3 \pi } \sin^{2}\left( 3\,\phi \right)\cos \left( \phi \right) \end{equation}

1. Translate this state into eigenfunction, bra/ket, and matrix representations. Remember that you can use any of these representations in the following calculations.

2. What is the probability that the particle can be found in the region $0<\phi< \frac{\pi}{4}$? In the region $\frac{\pi}{4}<\phi< \frac{3 \pi}{4}$?
3. What is the expectation value of $L_z$ in this state?
4. The wave function and it's probability density are plotted below. What features of these graphs (if any) tell you the expectation value of $L_z$ in this state?

• assignment Working with Representations on the Ring

assignment Homework

##### Working with Representations on the Ring
Central Forces 2023 (3 years)

The following are 3 different representations for the $\textbf{same}$ state on a quantum ring for $r_0=1$ \begin{equation} \left|{\Phi_a}\right\rangle = i\sqrt{\frac{ 2}{12}}\left|{3}\right\rangle - \sqrt{\frac{ 1}{12}}\left|{1}\right\rangle +\sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}}\left|{0}\right\rangle -i\sqrt{\frac{ 2}{ 12}}\left|{-1}\right\rangle +\sqrt{\frac{ 4}{12}}\left|{-3}\right\rangle \end{equation} \begin{equation} \left| \Phi_b\right\rangle \doteq \left( \begin{matrix} \vdots \\ i\sqrt{\frac{ 2}{12}}\\ 0 \\ -\sqrt{\frac{ 1}{12}} \\ \sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}} \\ -i\sqrt{\frac{ 2}{12}}\\ 0 \\ \sqrt{\frac{4}{12} }\\ \vdots \end{matrix}\right) \begin{matrix} \leftarrow m=0 \end{matrix} \end{equation} \begin{equation} \Phi_c(\phi) \doteq \sqrt{\frac{1}{24 \pi}} \left( i\sqrt{2}e^{i 3 \phi} -e^{i\phi} +\sqrt{3}e^{i\frac{\pi}{4}} -i \sqrt{2} e^{-i\phi} + \sqrt{4}e^{-i 3 \phi} \right) \end{equation}

1. With each representation of the state given above, explicitly calculate the probability that $L_z=-1\hbar$. Then, calculate all other non-zero probabilities for values of $L_z$ with a method/representation of your choice.
2. Explain how you could be sure you calculated all of the non-zero probabilities.
3. If you measured the $z$-component of angular momentum to be $3\hbar$, what would the state of the particle be immediately after the measurement is made?
4. With each representation of the state given above, explicitly calculate the probability that $E=\frac{9}{2}\frac{\hbar^2}{I}$. Then, calculate all other non-zero probabilities for values of $E$ with a method of your choice.
5. If you measured the energy of the state to be $\frac{9}{2}\frac{\hbar^2}{I}$, what would the state of the particle be immediately after the measurement is made?

• group Working with Representations on the Ring

group Small Group Activity

30 min.

##### Working with Representations on the Ring
Central Forces 2023 (3 years)
• group Energy and Angular Momentum for a Quantum Particle on a Ring

group Small Group Activity

30 min.

##### Energy and Angular Momentum for a Quantum Particle on a Ring

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.
• assignment Ring Function

assignment Homework

##### Ring Function
Central Forces 2023 (3 years) Consider the normalized wavefunction $\Phi\left(\phi\right)$ for a quantum mechanical particle of mass $\mu$ constrained to move on a circle of radius $r_0$, given by: \begin{equation} \Phi\left(\phi\right)= \frac{N}{2+\cos(3\phi)} \end{equation} where $N$ is the normalization constant.
1. Find $N$.

2. Plot this wave function.
3. Plot the probability density.
4. Find the probability that if you measured $L_z$ you would get $3\hbar$.
5. What is the expectation value of $L_z$ in this state?
• face Systems of Particles Lecture Notes

face Lecture

10 min.

##### Systems of Particles Lecture Notes
Central Forces 2023 (3 years)
• face Central Forces Introduction: Lecture Notes

face Lecture

5 min.

##### Central Forces Introduction: Lecture Notes
Central Forces 2023 (2 years)
• assignment Flux through a Paraboloid

assignment Homework

##### Flux through a Paraboloid
Static Fields 2022 (5 years)

Find the upward pointing flux of the electric field $\vec E =E_0\, z\, \hat z$ through the part of the surface $z=-3 s^2 +12$ (cylindrical coordinates) that sits above the $(x, y)$--plane.

• group Superposition States for a Particle on a Ring

group Small Group Activity

30 min.

##### Superposition States for a Particle on a Ring

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.
• group Applying the equipartition theorem

group Small Group Activity

30 min.

##### Applying the equipartition theorem
Contemporary Challenges 2022 (4 years)

Students count the quadratic degrees of freedom of a few toy molecules to predict their internal energy at temperature $T$.
• group Outer Product of a Vector on Itself

group Small Group Activity

30 min.

##### Outer Product of a Vector on Itself
Quantum Fundamentals 2022 (2 years)

Students compute the outer product of a vector on itself to product a projection operator. Students discover that projection operators are idempotent (square to themselves) and that a complete set of outer products of an orthonormal basis is the identity (a completeness relation).

Learning Outcomes