EQUATION SHEET (2-sided):
Gauss's Law: \[ \oint \vec{E}\cdot \hat{n}\, dA = {1\over\epsilon_0}\, Q_{\hbox{enc}} \]
Ampère's Law:
\[ \oint \vec{B}\cdot d\vec{r} = \mu_0 \, I_{\hbox{enc}} \]
Potentials: \begin{eqnarray*} \vec{E}&=&-\vec{\nabla} V\\ \vec{B}&=&\vec{\nabla}\times\vec{A} \end{eqnarray*}
Maxwell's Equations:
\begin{eqnarray*}
\vec{\nabla}\cdot\vec{E} &=& \frac{\rho}{\epsilon_0}\\
\vec{\nabla}\cdot\vec{B} &=& 0\\
\vec{\nabla}\times\vec{E} &=& 0\\
\vec{\nabla}\times\vec{B} &=& {\mu_0}\, \vec{J}
\end{eqnarray*}
Superposition Laws:
\begin{eqnarray*}
V(\vec{r}) &=& \frac{1}{4\pi\epsilon_0}
\int{\rho(\vec{r}')\, d\tau'\over \vert \vec{r}-\vec{r}'\vert}\\
\vec{E}(\vec{r}) &=& \frac{1}{4\pi\epsilon_0}
\int{\rho(\vec{r}')(\vec{r}-\vec{r}')\, d\tau'\over \vert \vec{r}-\vec{r}'\vert^3}\\
\vec{A}(\vec{r}) &=& \frac{\mu_0}{4\pi}
\int{\vec{J}(\vec{r}')\, d\tau'\over \vert \vec{r}-\vec{r}'\vert}\\
\vec{B}(\vec{r}) &=& \frac{\mu_0}{4\pi}
\int{\vec{J}(\vec{r}')\times (\vec{r}-\vec{r}')\, d\tau'\over \vert \vec{r}-\vec{r}'\vert^3}\\
V(B)-V(A)&=&-\int_A^B \vec{E}\cdot d\vec{r}
\end{eqnarray*}
The distance between two position vectors
EQUATION SHEET (2-sided):
Rectangular Coordinates: \begin{eqnarray*} \vec{\nabla} f &=& \frac{\partial f}{\partial x}\,\hat{x} + \frac{\partial f}{\partial y}\,\hat{y} + \frac{\partial f}{\partial z}\,\hat{z} \\ \vec{\nabla}\cdot\vec{F} &=& \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} \\ \vec{\nabla}\times\vec{F} &=& \left(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z}\right)\hat{x} + \left(\frac{\partial F_x}{\partial z} -\frac{\partial F_z}{\partial x}\right)\hat{y} + \left(\frac{\partial F_y}{\partial x} -\frac{\partial F_x}{\partial y}\right)\hat{z} \end{eqnarray*}
Cylindrical Coordinates:
\begin{eqnarray*}
\vec{\nabla} f &=&
\frac{\partial f}{\partial s}\,\hat{s} + \frac{1}{s}\frac{\partial f}{\partial \phi}\,\hat{\phi}
+ \frac{\partial f}{\partial z}\,\hat{z} \\
\vec{\nabla}\cdot\vec{F} &=&
\frac{1}{s}\frac{\partial}{\partial s}\left({s}F_{s}\right)
+ \frac{1}{s}\frac{\partial F_\phi}{\partial \phi} + \frac{\partial F_z}{\partial z} \\
\vec{\nabla}\times\vec{F} &=&
\left( \frac{1}{s}\frac{\partial F_z}{\partial \phi} - \frac{\partial F_\phi}{\partial z} \right) \hat{s}
+ \left(\frac{\partial F_s}{\partial z}-\frac{\partial F_z}{\partial s}\right) \hat{\phi}
+ \frac{1}{s} \left( \frac{\partial}{\partial s}\left({s}F_{\phi}\right)
- \frac{\partial F_s}{\partial \phi} \right) \hat{z}
\end{eqnarray*}
Spherical Coordinates:
\begin{eqnarray*}
\vec{\nabla} f &=& \frac{\partial f}{\partial r}\,\hat{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\,\hat{\theta}
+ \frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\,\hat{\phi} \\
\vec{\nabla}\cdot\vec{F} &=& \frac{1}{r^2}\frac{\partial}{\partial r}\left({r^2}F_{r}\right)
+ \frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}\left({\sin\theta}F_{\theta}\right)
+ \frac{1}{r\sin\theta}\frac{\partial F_\phi}{\partial \phi} \\
\vec{\nabla}\times\vec{F}
&=& \frac{1}{r\sin\theta} \left( \frac{\partial}{\partial \theta}
\left({\sin\theta}F_{\phi}\right) - \frac{\partial F_\theta}{\partial \phi} \right) \hat{r}
+ \frac{1}{r} \left( \frac{1}{\sin\theta} \frac{\partial F_r}{\partial \phi}
- \frac{\partial}{\partial r}\left({r}F_{\phi}\right) \right) \hat{\theta} \\
&& \quad + \frac{1}{r} \left( \frac{\partial}{\partial r}\left({r}F_{\theta}\right)
- \frac{\partial F_r}{\partial \theta} \right) \hat{\phi}
\end{eqnarray*}
Lorentz Force Law:
\[\vec{F}=q_{\hbox{test}}\left(\vec{E}+\vec{v}\times\vec{B}\right)\]
Step and Delta Functions:
\begin{eqnarray*}
\frac{d}{dx} \theta(x-a)&=&\delta(x-a)\\
\int_{-\infty}^{\infty} f(x)\delta(x-a)\, dx&=&f(a)
\end{eqnarray*}