EQUATION SHEET (2-sided):
Gauss's Law: \[ \oint \vec{E}\cdot \hat{n}\, dA = {1\over\epsilon_0}\, Q_{\hbox{enc}} \]
Ampère's Law:
\[ \oint \vec{B}\cdot d\vec{r} = \mu_0 \, I_{\hbox{enc}} \]
Potentials: \begin{eqnarray*} \vec{E}&=&-\vec{\nabla} V\\ \vec{B}&=&\vec{\nabla}\times\vec{A} \end{eqnarray*}
Maxwell's Equations:
\begin{eqnarray*}
\vec{\nabla}\cdot\vec{E} &=& \frac{\rho}{\epsilon_0}\\
\vec{\nabla}\cdot\vec{B} &=& 0\\
\vec{\nabla}\times\vec{E} &=& 0\\
\vec{\nabla}\times\vec{B} &=& {\mu_0}\, \vec{J}
\end{eqnarray*}
Superposition Laws:
\begin{eqnarray*}
V(\vec{r}) &=& \frac{1}{4\pi\epsilon_0}
\int{\rho(\vec{r}')\, d\tau'\over \vert \vec{r}-\vec{r}'\vert}\\
\vec{E}(\vec{r}) &=& \frac{1}{4\pi\epsilon_0}
\int{\rho(\vec{r}')(\vec{r}-\vec{r}')\, d\tau'\over \vert \vec{r}-\vec{r}'\vert^3}\\
\vec{A}(\vec{r}) &=& \frac{\mu_0}{4\pi}
\int{\vec{J}(\vec{r}')\, d\tau'\over \vert \vec{r}-\vec{r}'\vert}\\
\vec{B}(\vec{r}) &=& \frac{\mu_0}{4\pi}
\int{\vec{J}(\vec{r}')\times (\vec{r}-\vec{r}')\, d\tau'\over \vert \vec{r}-\vec{r}'\vert^3}\\
V(B)-V(A)&=&-\int_A^B \vec{E}\cdot d\vec{r}
\end{eqnarray*}
The distance between two position vectors
EQUATION SHEET (2-sided):
Rectangular Coordinates: \begin{eqnarray*} \vec{\nabla} f &=& \frac{\partial f}{\partial x}\,\hat{x} + \frac{\partial f}{\partial y}\,\hat{y} + \frac{\partial f}{\partial z}\,\hat{z} \\ \vec{\nabla}\cdot\vec{F} &=& \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} \\ \vec{\nabla}\times\vec{F} &=& \left(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z}\right)\hat{x} + \left(\frac{\partial F_x}{\partial z} -\frac{\partial F_z}{\partial x}\right)\hat{y} + \left(\frac{\partial F_y}{\partial x} -\frac{\partial F_x}{\partial y}\right)\hat{z} \end{eqnarray*}
Cylindrical Coordinates:
\begin{eqnarray*}
\vec{\nabla} f &=&
\frac{\partial f}{\partial s}\,\hat{s} + \frac{1}{s}\frac{\partial f}{\partial \phi}\,\hat{\phi}
+ \frac{\partial f}{\partial z}\,\hat{z} \\
\vec{\nabla}\cdot\vec{F} &=&
\frac{1}{s}\frac{\partial}{\partial s}\left({s}F_{s}\right)
+ \frac{1}{s}\frac{\partial F_\phi}{\partial \phi} + \frac{\partial F_z}{\partial z} \\
\vec{\nabla}\times\vec{F} &=&
\left( \frac{1}{s}\frac{\partial F_z}{\partial \phi} - \frac{\partial F_\phi}{\partial z} \right) \hat{s}
+ \left(\frac{\partial F_s}{\partial z}-\frac{\partial F_z}{\partial s}\right) \hat{\phi}
+ \frac{1}{s} \left( \frac{\partial}{\partial s}\left({s}F_{\phi}\right)
- \frac{\partial F_s}{\partial \phi} \right) \hat{z}
\end{eqnarray*}
Spherical Coordinates:
\begin{eqnarray*}
\vec{\nabla} f &=& \frac{\partial f}{\partial r}\,\hat{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\,\hat{\theta}
+ \frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\,\hat{\phi} \\
\vec{\nabla}\cdot\vec{F} &=& \frac{1}{r^2}\frac{\partial}{\partial r}\left({r^2}F_{r}\right)
+ \frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}\left({\sin\theta}F_{\theta}\right)
+ \frac{1}{r\sin\theta}\frac{\partial F_\phi}{\partial \phi} \\
\vec{\nabla}\times\vec{F}
&=& \frac{1}{r\sin\theta} \left( \frac{\partial}{\partial \theta}
\left({\sin\theta}F_{\phi}\right) - \frac{\partial F_\theta}{\partial \phi} \right) \hat{r}
+ \frac{1}{r} \left( \frac{1}{\sin\theta} \frac{\partial F_r}{\partial \phi}
- \frac{\partial}{\partial r}\left({r}F_{\phi}\right) \right) \hat{\theta} \\
&& \quad + \frac{1}{r} \left( \frac{\partial}{\partial r}\left({r}F_{\theta}\right)
- \frac{\partial F_r}{\partial \theta} \right) \hat{\phi}
\end{eqnarray*}
Lorentz Force Law:
\[\vec{F}=q_{\hbox{test}}\left(\vec{E}+\vec{v}\times\vec{B}\right)\]
Step and Delta Functions:
\begin{eqnarray*}
\frac{d}{dx} \theta(x-a)&=&\delta(x-a)\\
\int_{-\infty}^{\infty} f(x)\delta(x-a)\, dx&=&f(a)
\end{eqnarray*}
group Small Group Activity
30 min.
group Small Group Activity
30 min.
face Lecture
30 min.
thermodynamics statistical mechanics
These are notes, essentially the equation sheet, from the final review session for Thermal and Statistical Physics.assignment Homework
Consider the vector field \(\vec F=(x+2)\hat{x} +(z+2)\hat{z}\).
face Lecture
120 min.
phase transformation Clausius-Clapeyron mean field theory thermodynamics
These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.group Small Group Activity
30 min.
group Small Group Activity
120 min.
face Lecture
120 min.
ideal gas particle in a box grand canonical ensemble chemical potential statistical mechanics
These notes from week 6 of Thermal and Statistical Physics cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.group Small Group Activity
30 min.
Taylor series power series approximation
This activity starts with a brief lecture introduction to power series and a short derivation of the formula for calculating the power series coefficients.
\[c_n={1\over n!}\, f^{(n)}(z_0)\]
Students use this formula to compute the power series coefficients for a \(\sin\theta\) (around both the origin and (if time allows) \(\frac{\pi}{6}\)). The meaning of these coefficients and the convergence behavior for each approximation is discussed in the whole-class wrap-up and in the follow-up activity: Visualization of Power Series Approximations.
keyboard Computational Activity
120 min.
inner product wave function quantum mechanics particle in a box
Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.