Consider a spin 1 interferometer which prepares the state as \(| 1\rangle\), then sends this state through an \(S_x\) apparatus and then an \(S_z\) apparatus. For the four possible cases where a pair of beams or all three beams from the \(S_x\) Stern-Gernach analyzer are used, calculate the probabilities that a particle entering the last Stern-Gerlach device will be measured to have each possible value of \(S_z\). Compare your theoretical calculations to results of the simulation. Make sure that you explicitly discuss your choice of projection operators.
Note: You do not need to do the first case, as we have done it in class.
Carry out the following matrix calculations.
\[ \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix}a_{11} & a_{12} & a_{13} \cr a_{21} & a_{22} & a_{23} \cr a_{31} & a_{32} & a_{33}\cr\end{pmatrix} \begin{pmatrix}1\cr0\cr0\cr\end{pmatrix}\] and
\[\begin{pmatrix} 0 & 1 & 0\end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \cr a_{21} & a_{22} & a_{23} \cr a_{31} & a_{32} & a_{33}\end{pmatrix} \begin{pmatrix}0\cr1\cr0\cr\end{pmatrix} \]
What matrix multiplication would you do if you wanted the answer to be \(a_{31}\)?
In the first question above, the bra/ket representations for the calulations are:
\[\left\langle {2}\right| A\left|{1}\right\rangle = ? \quad \hbox{and} \quad \left\langle {2}\right| A\left|{2}\right\rangle = ?\]
Write the second question in bra/ket notation.