face Lecture
120 min.
Planck distribution blackbody radiation photon statistical mechanics
These notes from the fourth week of Thermal and Statistical Physics cover blackbody radiation and the Planck distribution. They include a number of small group activities.assignment Homework
Consider two noninteracting systems \(A\) and \(B\). We can either treat these systems as separate, or as a single combined system \(AB\). We can enumerate all states of the combined by enumerating all states of each separate system. The probability of the combined state \((i_A,j_B)\) is given by \(P_{ij}^{AB} = P_i^AP_j^B\). In other words, the probabilities combine in the same way as two dice rolls would, or the probabilities of any other uncorrelated events.
face Lecture
5 min.
thermodynamics statistical mechanics
This very quick lecture reviews the content taught in Energy and Entropy, and is the first content in Thermal and Statistical Physics.assignment Homework
assignment Homework
group Small Group Activity
30 min.
assignment Homework
Solve for \(\frac{dp}{dT}\) in terms of the pressure of the vapor and the latent heat \(L\) and the temperature.
Assume further that the latent heat is roughly independent of temperature. Integrate to find the vapor pressure itself as a function of temperature (and of course, the latent heat).
assignment Homework
The isothermal compressibility is defined as \begin{equation} K_{T}=-\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{T} \end{equation} \(K_T\) is be found by measuring the fractional change in volume when the the pressure is slightly changed with the temperature held constant. In contrast, the adiabatic compressibility is defined as \begin{equation} K_{S}=-\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{S} \end{equation} and is measured by making a slight change in pressure without allowing for any heat transfer. This is the compressibility, for instance, that would directly affect the speed of sound. Show that \begin{equation} \frac{K_{T}}{K_{S}} = \frac{C_{p}}{C_{V}} \end{equation} Where the heat capacities at constant pressure and volume are given by \begin{align} C_{p} &= T \left(\frac{\partial S}{\partial T}\right)_{p} \\ C_{V} &= T \left(\frac{\partial S}{\partial T}\right)_{V} \end{align}
group Small Group Activity
30 min.
face Lecture
120 min.
phase transformation Clausius-Clapeyron mean field theory thermodynamics
These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.(modified from K&K 4.6) We discussed in class that \begin{align} p &= -\left(\frac{\partial F}{\partial V}\right)_T \end{align} Use this relationship to show that
\begin{align} p &= -\sum_j \langle n_j\rangle\hbar \left(\frac{d\omega_j}{dV}\right), \end{align} where \(\langle n_j\rangle\) is the number of photons in the mode \(j\);
Solve for the relationship between pressure and internal energy.