assignment Homework
computer Mathematica Activity
30 min.
central forces quantum mechanics angular momentum probability density eigenstates time evolution superposition mathematica
Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.assignment Homework
For an infinitesimally thin cylindrical shell of radius \(b\) with uniform surface charge density \(\sigma\), the electric field is zero for \(s<b\) and \(\vec{E}= \frac{\sigma b}{\epsilon_0 s}\, \hat s\) for \(s > b\). Use the differential form of Gauss' Law to find the charge density everywhere in space.
group Small Group Activity
30 min.
assignment Homework
The gravitational field due to a spherical shell of matter (or equivalently, the
electric field due to a spherical shell of charge) is given by:
\begin{equation}
\vec g =
\begin{cases}
0&\textrm{for } r<a\\
-G \,\frac{M}{b^3-a^3}\,
\left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\
-G\,\frac{M}{r^2}\, \hat r & \textrm{for } r>b \\
\end{cases}
\end{equation}
This problem explores the consequences of the divergence theorem for this shell.
assignment Homework
assignment Homework
assignment Homework
For each case below, find the total charge.
assignment Homework
Using your favorite graphing package, make a plot of the reduced mass \begin{equation} \mu=\frac{m_1\, m_2}{m_1+m_2} \end{equation} as a function of \(m_1\) and \(m_2\). What about the shape of this graph tells you something about the physical world that you would like to remember. You should be able to find at least three things. Hint: Think limiting cases.
group Small Group Activity
30 min.
magnetic fields current Biot-Savart law vector field symmetry
Students work in small groups to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.
In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.