## Fluctuations in a Fermi gas

• Fermi gas grand canonical ensemble statistical mechanics
• assignment Energy fluctuations

assignment Homework

##### Energy fluctuations
energy Boltzmann factor statistical mechanics heat capacity Thermal and Statistical Physics 2020 Consider a system of fixed volume in thermal contact with a resevoir. Show that the mean square fluctuations in the energy of the system is $$\left<\left(\varepsilon-\langle\varepsilon\rangle\right)^2\right> = k_BT^2\left(\frac{\partial U}{\partial T}\right)_{V}$$ Here $U$ is the conventional symbol for $\langle\varepsilon\rangle$. Hint: Use the partition function $Z$ to relate $\left(\frac{\partial U}{\partial T}\right)_V$ to the mean square fluctuation. Also, multiply out the term $(\cdots)^2$.
• computer Visualization of Quantum Probabilities for a Particle Confined to a Ring

computer Mathematica Activity

30 min.

##### Visualization of Quantum Probabilities for a Particle Confined to a Ring
Central Forces 2023 (3 years)

Quantum Ring Sequence

Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.
• assignment Differential Form of Gauss's Law

assignment Homework

##### Differential Form of Gauss's Law
Static Fields 2023 (6 years)

For an infinitesimally thin cylindrical shell of radius $b$ with uniform surface charge density $\sigma$, the electric field is zero for $s<b$ and $\vec{E}= \frac{\sigma b}{\epsilon_0 s}\, \hat s$ for $s > b$. Use the differential form of Gauss' Law to find the charge density everywhere in space.

• group Energy radiated from one oscillator

group Small Group Activity

30 min.

##### Energy radiated from one oscillator
Contemporary Challenges 2021 (4 years)

This lecture is one step in motivating the form of the Planck distribution.
• assignment Gravitational Field and Mass

assignment Homework

##### Gravitational Field and Mass
Static Fields 2023 (5 years)

The gravitational field due to a spherical shell of matter (or equivalently, the electric field due to a spherical shell of charge) is given by: $$\vec g = \begin{cases} 0&\textrm{for } r<a\\ -G \,\frac{M}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ -G\,\frac{M}{r^2}\, \hat r & \textrm{for } r>b \\ \end{cases}$$

This problem explores the consequences of the divergence theorem for this shell.

1. Using the given description of the gravitational field, find the divergence of the gravitational field everywhere in space. You will need to divide this question up into three parts: $r<a$, $a<r<b$, and $r>b$.
2. Briefly discuss the physical meaning of the divergence in this particular example.
3. For this gravitational field, verify the divergence theorem on a sphere, concentric with the shell, with radius $Q$, where $a<Q<b$. ("Verify" the divergence theorem means calculate the integrals from both sides of the divergence theorem and show that they give the same answer.)
4. Briefly discuss how this example would change if you were discussing the electric field of a uniformly charged spherical shell.

• assignment Magnetic Field and Current

assignment Homework

##### Magnetic Field and Current
Static Fields 2023 (4 years) Consider the magnetic field $\vec{B}(s,\phi,z)= \begin{cases} 0&0\le s<a\\ \alpha \frac{1}{s}(s^4-a^4)\, \hat{\phi}&a<s<b\\ 0&s>b \end{cases}$
1. Use step and/or delta functions to write this magnetic field as a single expression valid everywhere in space.
2. Find a formula for the current density that creates this magnetic field.
3. Interpret your formula for the current density, i.e. explain briefly in words where the current is.
• assignment Electric Field and Charge

assignment Homework

##### Electric Field and Charge
divergence charge density Maxwell's equations electric field Static Fields 2023 (4 years) Consider the electric field $$\vec E(r,\theta,\phi) = \begin{cases} 0&\textrm{for } r<a\\ \frac{1}{4\pi\epsilon_0} \,\frac{Q}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ 0 & \textrm{for } r>b \\ \end{cases}$$
1. Use step and/or delta functions to write this electric field as a single expression valid everywhere in space.
2. Find a formula for the charge density that creates this electric field.
3. Interpret your formula for the charge density, i.e. explain briefly in words where the charge is.
• assignment Total Charge

assignment Homework

##### Total Charge
charge density curvilinear coordinates

Integration Sequence

Static Fields 2023 (6 years)

For each case below, find the total charge.

1. A positively charged (dielectric) spherical shell of inner radius $a$ and outer radius $b$ with a spherically symmetric internal charge density $$\rho(\vec{r})=3\alpha\, e^{(kr)^3}$$
2. A positively charged (dielectric) cylindrical shell of inner radius $a$ and outer radius $b$ with a cylindrically symmetric internal charge density $$\rho(\vec{r})=\alpha\, \frac{1}{s}\, e^{ks}$$

• assignment Reduced Mass

assignment Homework

##### Reduced Mass
Central Forces 2023 (3 years)

Using your favorite graphing package, make a plot of the reduced mass $$\mu=\frac{m_1\, m_2}{m_1+m_2}$$ as a function of $m_1$ and $m_2$. What about the shape of this graph tells you something about the physical world that you would like to remember. You should be able to find at least three things. Hint: Think limiting cases.

• group Magnetic Field Due to a Spinning Ring of Charge

group Small Group Activity

30 min.

##### Magnetic Field Due to a Spinning Ring of Charge
Static Fields 2023 (7 years)

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in small groups to use the Biot-Savart law $\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}$ to find an integral expression for the magnetic field, $\vec{B}(\vec{r})$, due to a spinning ring of charge.

In an optional extension, students find a series expansion for $\vec{B}(\vec{r})$ either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

• Thermal and Statistical Physics 2020 (K&K 7.11) Show for a single orbital of a fermion system that \begin{align} \left<(\Delta N)^2\right> = \left<N\right>(1+\left<N\right>) \end{align} if $\left<N\right>$ is the average number of fermions in that orbital. Notice that the fluctuation vanishes for orbitals with energies far enough from the chemical potential $\mu$ so that $\left<N\right>=1$ or $\left<N\right>=0$.