assignment Homework

Spin Three Halves Time Dependence
Quantum Fundamentals 2023 A spin-3/2 particle initially is in the state \(|\psi(0)\rangle = |\frac{1}{2}\rangle\). This particle is placed in an external magnetic field so that the Hamiltonian is proportional to the \(\hat{S}_x\) operator, \(\hat{H} = \alpha \hat{S}_x \doteq \frac{\alpha\hbar}{2}\begin{pmatrix} 0 & \sqrt{3} & 0 & 0\\ \sqrt{3} & 0 & 2 & 0\\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}\)
  1. Find the energy eigenvalues and energy eigenstates for the system.
  2. Find \(|\psi(t)\rangle\).
  3. List the outcomes of all possible measurements of \(S_x\) and find their probabilities. Explicitly identify any probabilities that depend on time.
  4. List the outcomes of all possible measurements of \(S_z\) and find their probabilities. Explicitly identify any probabilities that depend on time.

assignment_ind Small White Board Question

5 min.

Normalization of the Gaussian for Wavefunctions
Periodic Systems 2022

Fourier Transforms and Wave Packets

Students find a wavefunction that corresponds to a Gaussian probability density.

group Small Group Activity

120 min.

Spin-1 Time Evolution
Quantum Fundamentals 2023

Time Evolution Spin-1

Students do calculations for time evolution for spin-1.

assignment Homework

ISW Position Measurement
time evoluation infinite square well Quantum Fundamentals 2023

A particle in an infinite square well potential has an initial state vector \[\left|{\Psi(0)}\right\rangle = A\big(\left|{\phi_1}\right\rangle -\left|{\phi_2}\right\rangle +i\left|{\phi_3}\right\rangle \big)\]

where \(|\phi_n\rangle\) are the energy eigenstates. You have previously found \(\left|{\Psi(t)}\right\rangle \) for this state.

  1. Use a computer to graph the wave function \(\Psi(x,t)\) and probability density \(\rho(x,t)\). Choose a few interesting values of \(t\) to include in your submission.

  2. Use a computer to calculate the probability of measuring the particle to be near the middle of the well (within 1% on either side) as a function of time. Include both your symbolic result and a graph in your submission.

  3. Choose another location in the well, different from the location above. Use a computer to calculate the probability of measuring the particle to be near your chosen location (within 1% on either side) as a function of time. Include both your symbolic result and a graph in your submission.

  4. Are there any locations in the well where the probability is independent of time? Explain how you determined your answer.

  5. The time dependence for a wave function like this is complicated. Write a lengthy description in words about the major features of this wave function and its probability density, how they change in time, and why they change the way they do. Comment on any interesting features you noticed that you have not already discussed in the questions above and describe any additional things you learned from the process of solving this problem.

format_list_numbered Sequence

Quantum Ring Sequence
Students calculate probabilities and expectation values for a quantum mechanical particle confined to a circular ring in bra/ket, matrix, and wave function representations and compare the different calculation methods. Several different graphical representations of the time dependence for both states with special symmetry and arbitrary states are explored in a Mathematica notebook. Compared to the analogous particle-in-a-box, this quantum system has a new feature---degenerate energy eigenstates.

assignment Homework

Spin-1 Eigenvectors
eigenvectors Quantum Fundamentals 2023 The operator \(\hat{S}_x\) for spin-1 may be written as: defined by: \[\hat{S}_x=\frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0&1&0\\ 1&0&1 \\ 0&1&0 \\ \end{pmatrix} \]
  1. Find the eigenvalues and eigenvectors of this matrix. Write the eigenvectors as both matrices and kets.
  2. Confirm that the eigenstates you found give probabilities that match your expectation from the Spins simulation for spin-1 particles.

assignment Homework

Gibbs entropy is extensive
Gibbs entropy Probability Thermal and Statistical Physics 2020

Consider two noninteracting systems \(A\) and \(B\). We can either treat these systems as separate, or as a single combined system \(AB\). We can enumerate all states of the combined by enumerating all states of each separate system. The probability of the combined state \((i_A,j_B)\) is given by \(P_{ij}^{AB} = P_i^AP_j^B\). In other words, the probabilities combine in the same way as two dice rolls would, or the probabilities of any other uncorrelated events.

  1. Show that the entropy of the combined system \(S_{AB}\) is the sum of entropies of the two separate systems considered individually, i.e. \(S_{AB} = S_A+S_B\). This means that entropy is extensive. Use the Gibbs entropy for this computation. You need make no approximation in solving this problem.
  2. Show that if you have \(N\) identical non-interacting systems, their total entropy is \(NS_1\) where \(S_1\) is the entropy of a single system.

Note
In real materials, we treat properties as being extensive even when there are interactions in the system. In this case, extensivity is a property of large systems, in which surface effects may be neglected.

assignment Homework

Ring Table
Central Forces 2023 (3 years)

Attached, you will find a table showing different representations of physical quantities associated with a quantum particle confined to a ring. Fill in all of the missing entries. Hint: You may look ahead. We filled out a number of the entries throughout the table to give you hints about what the forms of the other entries might be. pdf link for the Table or doc link for the Table

group Small Group Activity

30 min.

Superposition States for a Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum hermitian operators probability superposition

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.

computer Mathematica Activity

30 min.

Visualization of Quantum Probabilities for the Hydrogen Atom
Central Forces 2023 (3 years) Students use Mathematica to visualize the probability density distribution for the hydrogen atom orbitals with the option to vary the values of \(n\), \(\ell\), and \(m\).

assignment Homework

Spin-1/2 Time Dependence Practice
Quantum Fundamentals 2023 Two electrons are placed in a magnetic field in the \(z\)-direction. The initial state of the first electron is \(\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ i\\ \end{pmatrix}\) and the initial state of the second electron is \(\frac{1}{2}\begin{pmatrix} \sqrt{3}\\ 1\\ \end{pmatrix}\).
  1. Find the probabilty of measuring each particle to have spin-up in the \(x\)-, \(y\)-, and \(z\)-directions at \(t = 0\).
  2. Find the probabilty of measuring each particle to have spin-up in the \(x\)-, \(y\)-, and \(z\)-directions at some later time \(t\).
  3. Calculate the expectation values for \(S_x\), \(S_y\), and \(S_z\) for each particle as functions of time.
  4. Are there any times when all the probabilities you have calculated are the same as they were at \(t = 0\)?

assignment Homework

Symmetry of filled and vacant orbitals
Symmetry Orbitals Thermal and Statistical Physics 2020 Show that \begin{align} f(\mu+\delta) &= 1 - f(\mu-\delta) \end{align} This means that the probability that an orbital above the Fermi level is occupied is equal to the probability an orbital the same distance below the Fermi level being empty. These unoccupied orbitals are called holes.

group Small Group Activity

30 min.

Time Evolution of a Spin-1/2 System
Quantum Fundamentals 2023 (3 years)

quantum mechanics spin precession time evolution

In this small group activity, students solve for the time dependence of two quantum spin 1/2 particles under the influence of a Hamiltonian. Students determine, given a Hamiltonian, which states are stationary and under what circumstances measurement probabilities do change with time.

group Small Group Activity

30 min.

Quantum Measurement Play
Quantum Fundamentals 2023 (2 years)

Quantum Measurement Projection Operators Spin-1/2

The instructor and students do a skit where students represent quantum states that are “measured” by the instructor resulting in a state collapse.

assignment Homework

Wavefunctions
Quantum Fundamentals 2023 (3 years)

Consider the following wave functions (over all space - not the infinite square well!):

\(\psi_a(x) = A e^{-x^2/3}\)

\(\psi_b(x) = B \frac{1}{x^2+2} \)

\(\psi_c(x) = C \;\mbox{sech}\left(\frac{x}{5}\right)\) (“sech” is the hyperbolic secant function.)

In each case:

  1. normalize the wave function,
  2. plot the wave function using Mathematica or other computer plotting tool (be sure to include the code you used and label your plots/axes appropriately),
  3. find the probability that the particle is measured to be in the range \(0<x<1\).

computer Mathematica Activity

30 min.

Visualizing Combinations of Spherical Harmonics
Central Forces 2023 (3 years) Students observe three different plots of linear combinations of spherical combinations with probability density represented by color on the sphere, distance from the origin (polar plot), and distance from the surface of the sphere.

group Small Group Activity

10 min.

Sequential Stern-Gerlach Experiments
Quantum Fundamentals 2023 (3 years)

assignment Homework

Phase 2
quantum mechanics relative phase overall phase measurement probability Quantum Fundamentals 2023 (3 years) Consider the three quantum states: \[\left\vert \psi_1\right\rangle = \frac{4}{5}\left\vert +\right\rangle+ i\frac{3}{5} \left\vert -\right\rangle\] \[\left\vert \psi_2\right\rangle = \frac{4}{5}\left\vert +\right\rangle- i\frac{3}{5} \left\vert -\right\rangle\] \[\left\vert \psi_3\right\rangle = -\frac{4}{5}\left\vert +\right\rangle+ i\frac{3}{5} \left\vert -\right\rangle\]
  1. For each of the \(\left|{\psi_i}\right\rangle \) above, calculate the probabilities of spin component measurements along the \(x\), \(y\), and \(z\)-axes.
  2. Look For a Pattern (and Generalize): Use your results from \((a)\) to comment on the importance of the overall phase and of the relative phases of the quantum state vector.

face Lecture

30 min.

Compare & Contrast Kets & Wavefunctions

Bra-Ket Notations Wavefunction Notation Completeness Relations Probability Probability Density

Completeness Relations

In this lecture, the instructor guides a discussion about translating between bra-ket notation and wavefunction notation for quantum systems.

assignment Homework

Boltzmann probabilities
Energy Entropy Boltzmann probabilities Thermal and Statistical Physics 2020 (3 years) Consider a three-state system with energies \((-\epsilon,0,\epsilon)\).
  1. At infinite temperature, what are the probabilities of the three states being occupied? What is the internal energy \(U\)? What is the entropy \(S\)?
  2. At very low temperature, what are the three probabilities?
  3. What are the three probabilities at zero temperature? What is the internal energy \(U\)? What is the entropy \(S\)?
  4. What happens to the probabilities if you allow the temperature to be negative?