assignment_ind Small White Board Question

5 min.

Normalization of the Gaussian for Wavefunctions
Periodic Systems 2022

Fourier Transforms and Wave Packets

Students find a wavefunction that corresponds to a Gaussian probability density.

format_list_numbered Sequence

Completeness Relations
This set of activities explores completeness relations in quantum mechanics and how they eventually support understanding of wavefunctions and what it means to be in the position or momentum representatations.

face Lecture

30 min.

Compare & Contrast Kets & Wavefunctions

Bra-Ket Notations Wavefunction Notation Completeness Relations Probability Probability Density

Completeness Relations

In this lecture, the instructor guides a discussion about translating between bra-ket notation and wavefunction notation for quantum systems.

group Small Group Activity

60 min.

Going from Spin States to Wavefunctions
Quantum Fundamentals 2022 (2 years)

Wavefunctions quantum states probability amplitude histograms matrix notation of quantum states Arms representation

Arms Sequence for Complex Numbers and Quantum States

Completeness Relations

Students review using the Arms representation to represent states for discrete quantum systems and connecting the Arms representation to histogram and matrix representation. The student then extend the Arms representation to begin exploring the continuous position basis.

group Small Group Activity

30 min.

Superposition States for a Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum hermitian operators probability superposition

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.

assignment Homework

Wavefunctions
Quantum Fundamentals 2022 (2 years)

Consider the following wave functions (over all space - not the infinite square well!):

\(\psi_a(x) = A e^{-x^2/3}\)

\(\psi_b(x) = B \frac{1}{x^2+2} \)

\(\psi_c(x) = C \;\mbox{sech}\left(\frac{x}{5}\right)\) (“sech” is the hyperbolic secant function.)

In each case:

  1. normalize the wave function,
  2. plot the wave function using Mathematica or other computer plotting tool (be sure to include the code you used and label your plots/axes appropriately),
  3. find the probability that the particle is measured to be in the range \(0<x<1\).

keyboard Computational Activity

120 min.

Sinusoidal basis set
Computational Physics Lab II 2022

inner product wave function quantum mechanics particle in a box

Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.

group Small Group Activity

30 min.

Energy and Angular Momentum for a Quantum Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.

computer Mathematica Activity

30 min.

Visualization of Quantum Probabilities for a Particle Confined to a Ring
Central Forces 2023 (3 years)

central forces quantum mechanics angular momentum probability density eigenstates time evolution superposition mathematica

Quantum Ring Sequence

Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.

computer Mathematica Activity

30 min.

Visualization of Quantum Probabilities for the Hydrogen Atom
Central Forces 2023 (3 years) Students use Mathematica to visualize the probability density distribution for the hydrogen atom orbitals with the option to vary the values of \(n\), \(\ell\), and \(m\).

keyboard Computational Activity

120 min.

Mean position
Computational Physics Lab II 2022

probability density particle in a box wave function quantum mechanics

Students compute probabilities and averages given a probability density in one dimension. This activity serves as a soft introduction to the particle in a box, introducing all the concepts that are needed.

group Small Group Activity

30 min.

Time Dependence for a Quantum Particle on a Ring
Theoretical Mechanics (6 years)

central forces quantum mechanics eigenstates eigenvalues angular momentum time dependence hermitian operators probability degeneracy quantum measurements

Quantum Ring Sequence

Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.

computer Mathematica Activity

30 min.

Visualizing Combinations of Spherical Harmonics
Central Forces 2023 (3 years) Students observe three different plots of linear combinations of spherical combinations with probability density represented by color on the sphere, distance from the origin (polar plot), and distance from the surface of the sphere.

group Small Group Activity

30 min.

Expectation Values for a Particle on a Ring
Central Forces 2023 (3 years)

central forces quantum mechanics eigenstates eigenvalues hermitian operators quantum measurements degeneracy expectation values time dependence

Quantum Ring Sequence

Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.

assignment Homework

Entropy of mixing
Entropy Equilibrium Sackur-Tetrode Thermal and Statistical Physics 2020

Suppose that a system of \(N\) atoms of type \(A\) is placed in diffusive contact with a system of \(N\) atoms of type \(B\) at the same temperature and volume.

  1. Show that after diffusive equilibrium is reached the total entropy is increased by \(2Nk\ln 2\). The entropy increase \(2Nk\ln 2\) is known as the entropy of mixing.

  2. If the atoms are identical (\(A=B\)), show that there is no increase in entropy when diffusive contact is established. The difference has been called the Gibbs paradox.

  3. Since the Helmholtz free energy is lower for the mixed \(AB\) than for the separated \(A\) and \(B\), it should be possible to extract work from the mixing process. Construct a process that could extract work as the two gasses are mixed at fixed temperature. You will probably need to use walls that are permeable to one gas but not the other.

Note

This course has not yet covered work, but it was covered in Energy and Entropy, so you may need to stretch your memory to finish part (c).

assignment Homework

Ring Function
Central Forces 2023 (3 years) Consider the normalized wavefunction \(\Phi\left(\phi\right)\) for a quantum mechanical particle of mass \(\mu\) constrained to move on a circle of radius \(r_0\), given by: \begin{equation} \Phi\left(\phi\right)= \frac{N}{2+\cos(3\phi)} \end{equation} where \(N\) is the normalization constant.
  1. Find \(N\).

  2. Plot this wave function.
  3. Plot the probability density.
  4. Find the probability that if you measured \(L_z\) you would get \(3\hbar\).
  5. What is the expectation value of \(L_z\) in this state?

group Small Group Activity

120 min.

Representations of the Infinite Square Well
Quantum Fundamentals 2022 (3 years)

Warm-Up

group Small Group Activity

30 min.

Wavefunctions on a Quantum Ring
Central Forces 2023 (2 years)

keyboard Computational Activity

120 min.

Kinetic energy
Computational Physics Lab II 2022

finite difference hamiltonian quantum mechanics particle in a box eigenfunctions

Students implement a finite-difference approximation for the kinetic energy operator as a matrix, and then use numpy to solve for eigenvalues and eigenstates, which they visualize.

group Small Group Activity

30 min.

Operators & Functions
Quantum Fundamentals 2022 (3 years) Students are asked to:
  • Test to see if one of the given functions is an eigenfunction of the given operator
  • See if they can write the functions that are found not to be eigenfunctions as a linear combination of eigenfunctions.