title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.
Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.

Small Group Activity

30 min.

Superposition States for a Particle on a Ring
Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.

Small Group Activity

30 min.

Expectation Values for a Particle on a Ring
Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.
Students use Tinker Toys to represent each component in a two-state quantum spin system in all three standard bases (\(x\), \(y\), and \(z\)). Through a short series of instructor-led prompts, students explore the difference between overall phase (which does NOT change the state of the system) and relative phase (which does change the state of the system). This activity is optional in the Arms Sequence Arms Sequence for Complex Numbers and Quantum States.
The instructor gives a brief lecture about time dependence of energy eigenstates (e.g. McIntyre, 3.1). Notes for the students are attached.

Computational Activity

120 min.

Kinetic energy
Students implement a finite-difference approximation for the kinetic energy operator as a matrix, and then use numpy to solve for eigenvalues and eigenstates, which they visualize.

Small Group Activity

30 min.

Wavefunctions on a Quantum Ring
This activity lets students explore translating a wavefunction that isn't obviously made up of eigenstates at first glance into ket and matrix form. Then students explore wave functions, probabilities in a region, expectation values, and what wavefunctions can tell you about measurements of \(L_z\).