accessibility_new Kinesthetic

30 min.

Using Arms to Visualize Transformations of Complex Two-Component Vectors (MathBits)
Quantum Fundamentals 2021

arms complex numbers phase rotation reflection math

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, represent two component complex vectors with their left arms. Through a short series of instructor led prompts, students move their left arms to show how various linear transformations affect each complex component.

face Lecture

5 min.

Quantum Reference Sheet
Central Forces 2021 (2 years)

assignment Homework

Frequency
Quantum Mechanics Time Evolution Spin Precession Expectation Value Bohr Frequency Quantum Fundamentals 2021 Consider a two-state quantum system with a Hamiltonian \begin{equation} \hat{H}\doteq \begin{pmatrix} E_1&0\\ 0&E_2 \end{pmatrix} \end{equation} Another physical observable \(M\) is described by the operator \begin{equation} \hat{M}\doteq \begin{pmatrix} 0&c\\ c&0 \end{pmatrix} \end{equation} where \(c\) is real and positive. Let the initial state of the system be \(\left|{\psi(0)}\right\rangle =\left|{m_1}\right\rangle \), where \(\left|{m_1}\right\rangle \) is the eigenstate corresponding to the larger of the two possible eigenvalues of \(\hat{M}\). What is the frequency of oscillation of the expectation value of \(M\)? This frequency is the Bohr frequency.

group Small Group Activity

30 min.

Expectation Values for a Particle on a Ring
Central Forces 2021

central forces quantum mechanics eigenstates eigenvalues hermitian operators quantum measurements degeneracy expectation values time dependence

Quantum Ring Sequence

Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.

group Small Group Activity

30 min.

Operators & Functions
Quantum Fundamentals 2021 Students are asked to:
  • Test to see if one of the given functions is an eigenfunction of the given operator
  • See if they can write the functions that are found not to be eigenfunctions as a linear combination of eigenfunctions.

group Small Group Activity

30 min.

Superposition States for a Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum hermitian operators probability superposition

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.

group Small Group Activity

30 min.

Energy and Angular Momentum for a Quantum Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.

assignment Homework

Matrix Elements and Completeness Relations
Quantum Fundamentals 2021

Writing an operator in matrix notation in its own basis is easy: it is diagonal with the eigenvalues on the diagonal.

What if I want to calculate the matrix elements using a different basis??

The eigenvalue equation tells me what happens when an operator acts on its own eigenstate. For example: \(\hat{S}_y\left|{\pm}\right\rangle _y=\pm\frac{\hbar}{2}\left|{\pm}\right\rangle _y\)

In Dirac bra-ket notation, to know what an operator does to a ket, I needs to write the ket in the basis that is the eigenstates of the operator (in order to use the eigenvalue equation.)

One way to do this to stick completeness relationships into the braket: \begin{eqnarray*} \left\langle {+}\right|\hat{S_y}\left|{+}\right\rangle = \left\langle {+}\right|(I)\hat{S_y}(I)\left|{+}\right\rangle \end{eqnarray*}

where \(I\) is the identity operator: \(I=\left|{+}\right\rangle _y {}_y\left\langle {+}\right|+\left|{-}\right\rangle _y {}_y\left\langle {-}\right|\). This effectively rewrite the \(\left|{+}\right\rangle \) in the \(\left|{\pm}\right\rangle _y\) basis.

Find the top row matrix elements of the operator \(\hat{S}_y\) in the \(S_z\) basis by inserting completeness relations into the brakets. (The answer is already on the Spins Reference Sheet, but I want you do demonstrate the calculation.)

group Small Group Activity

30 min.

Time Dependence for a Quantum Particle on a Ring
Central Forces 2021

central forces quantum mechanics eigenstates eigenvalues angular momentum time dependence hermitian operators probability degeneracy quantum measurements

Quantum Ring Sequence

Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.

assignment Homework

Diatomic hydrogen
rigid rotor hamiltonian angular momentum ground state hydrogen diatomic probability Energy and Entropy 2021 (2 years)

At low temperatures, a diatomic molecule can be well described as a rigid rotor. The Hamiltonian of such a system is simply proportional to the square of the angular momentum \begin{align} H &= \frac{1}{2I}L^2 \end{align} and the energy eigenvalues are \begin{align} E_{\ell m} &= \hbar^2 \frac{\ell(\ell+1)}{2I} \end{align}

  1. What is the energy of the ground state and the first and second excited states of the \(H_2\) molecule? i.e. the lowest three distinct energy eigenvalues.

  2. At room temperature, what is the relative probability of finding a hydrogen molecule in the \(\ell=0\) state versus finding it in any one of the \(\ell=1\) states?
    i.e. what is \(P_{\ell=0,m=0}/\left(P_{\ell=1,m=-1} + P_{\ell=1,m=0} + P_{\ell=1,m=1}\right)\)

  3. At what temperature is the value of this ratio 1?

  4. At room temperature, what is the probability of finding a hydrogen molecule in any one of the \(\ell=2\) states versus that of finding it in the ground state?
    i.e. what is \(P_{\ell=0,m=0}/\left(P_{\ell=2,m=-2} + P_{\ell=2,m=-1} + \cdots + P_{\ell=2,m=2}\right)\)

group Small Group Activity

30 min.

Time Evolution of a Spin-1/2 System
Quantum Fundamentals 2021

quantum mechanics spin precession time evolution

In this small group activity, students solve for the time dependence of two quantum spin 1/2 particles under the influence of a Hamiltonian. Students determine, given a Hamiltonian, which states are stationary and under what circumstances measurement probabilities do change with time.

face Lecture

30 min.

Time Evolution Refresher (Mini-Lecture)
Central Forces 2021

schrodinger equation time dependence stationary states

Quantum Ring Sequence

The instructor gives a brief lecture about time dependence of energy eigenstates (e.g. McIntyre, 3.1). Notes for the students are attached.

group Small Group Activity

30 min.

Working with Representations on the Ring
Central Forces 2021

group Small Group Activity

60 min.

Going from Spin States to Wavefunctions

Wavefunctions quantum states probability amplitude histograms matrix notation of quantum states Arms representation

Arms Sequence for Complex Numbers and Quantum States

Students review using the Arms representation to represent states for discrete quantum systems and connecting the Arms representation to histogram and matrix representation. The student then extend the Arms representation to begin exploring the continuous position basis.

face Lecture

120 min.

Ideal Gas
Thermal and Statistical Physics 2020

ideal gas particle in a box grand canonical ensemble chemical potential statistical mechanics

These notes from week 6 of Thermal and Statistical Physics cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.

face Lecture

120 min.

Gibbs entropy approach
Thermal and Statistical Physics 2020

Gibbs entropy information theory probability statistical mechanics

These lecture notes for the first week of Thermal and Statistical Physics include a couple of small group activities in which students work with the Gibbs formulation of the entropy.

face Lecture

120 min.

Thermal radiation and Planck distribution
Thermal and Statistical Physics 2020

Planck distribution blackbody radiation photon statistical mechanics

These notes from the fourth week of Thermal and Statistical Physics cover blackbody radiation and the Planck distribution. They include a number of small group activities.

face Lecture

120 min.

Chemical potential and Gibbs distribution
Thermal and Statistical Physics 2020

chemical potential Gibbs distribution grand canonical ensemble statistical mechanics

These notes from the fifth week of Thermal and Statistical Physics cover the grand canonical ensemble. They include several small group activities.

face Lecture

120 min.

Boltzmann probabilities and Helmholtz
Thermal and Statistical Physics 2020

ideal gas entropy canonical ensemble Boltzmann probability Helmholtz free energy statistical mechanics

These notes, from the third week of Thermal and Statistical Physics cover the canonical ensemble and Helmholtz free energy. They include a number of small group activities.

face Lecture

120 min.

Phase transformations
Thermal and Statistical Physics 2020

phase transformation Clausius-Clapeyron mean field theory thermodynamics

These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.