The operator \(\hat{S}_x\) for spin-1 may be written as: defined by: \[\hat{S}_x=\frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0&1&0\\ 1&0&1 \\ 0&1&0 \\ \end{pmatrix} \]
  1. Find the eigenvalues and eigenvectors of this matrix. Write the eigenvectors as both matrices and kets.
  2. Confirm that the eigenstates you found give probabilities that match your expectation from the Spins simulation for spin-1 particles.
  • Found in: Quantum Fundamentals course(s)

None

Ring Table

Attached, you will find a table showing different representations of physical quantities associated with a quantum particle confined to a ring. Fill in all of the missing entries. Hint: You may look ahead. We filled out a number of the entries throughout the table to give you hints about what the forms of the other entries might be. pdf link for the Table or doc link for the Table

  • Found in: Central Forces course(s)
Students, working in pairs, represent two component complex vectors with their left arms. Through a short series of instructor led prompts, students move their left arms to show how various linear transformations affect each complex component.

face Lecture

5 min.

Quantum Reference Sheet
  • Found in: Central Forces course(s)
A spin-3/2 particle initially is in the state \(|\psi(0)\rangle = |\frac{1}{2}\rangle\). This particle is placed in an external magnetic field so that the Hamiltonian is proportional to the \(\hat{S}_x\) operator, \(\hat{H} = \alpha \hat{S}_x \doteq \frac{\alpha\hbar}{2}\begin{pmatrix} 0 & \sqrt{3} & 0 & 0\\ \sqrt{3} & 0 & 2 & 0\\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}\)
  1. Find the energy eigenvalues and energy eigenstates for the system.
  2. Find \(|\psi(t)\rangle\).
  3. List the outcomes of all possible measurements of \(S_x\) and find their probabilities. Explicitly identify any probabilities that depend on time.
  4. List the outcomes of all possible measurements of \(S_z\) and find their probabilities. Explicitly identify any probabilities that depend on time.
  • Found in: Quantum Fundamentals course(s)

None

Frequency
Consider a two-state quantum system with a Hamiltonian \begin{equation} \hat{H}\doteq \begin{pmatrix} E_1&0\\ 0&E_2 \end{pmatrix} \end{equation} Another physical observable \(M\) is described by the operator \begin{equation} \hat{M}\doteq \begin{pmatrix} 0&c\\ c&0 \end{pmatrix} \end{equation} where \(c\) is real and positive. Let the initial state of the system be \(\left|{\psi(0)}\right\rangle =\left|{m_1}\right\rangle \), where \(\left|{m_1}\right\rangle \) is the eigenstate corresponding to the larger of the two possible eigenvalues of \(\hat{M}\). What is the frequency of oscillation of the expectation value of \(M\)? This frequency is the Bohr frequency.
  • Found in: Quantum Fundamentals course(s)

group Small Group Activity

30 min.

Expectation Values for a Particle on a Ring
Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.

group Small Group Activity

30 min.

Operators & Functions
Students are asked to:
  • Test to see if one of the given functions is an eigenfunction of the given operator
  • See if they can write the functions that are found not to be eigenfunctions as a linear combination of eigenfunctions.
  • Found in: Quantum Fundamentals course(s)
  1. Find the eigenvalues and normalized eigenvectors of the Pauli matrices \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\) (see the Spins Reference Sheet posted on the course website).
  • Found in: Quantum Fundamentals course(s)

group Small Group Activity

120 min.

Spin-1 Time Evolution
Students do calculations for time evolution for spin-1.

group Small Group Activity

30 min.

Superposition States for a Particle on a Ring
Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.

keyboard Computational Activity

120 min.

Kinetic energy
Students implement a finite-difference approximation for the kinetic energy operator as a matrix, and then use numpy to solve for eigenvalues and eigenstates, which they visualize.
  1. Let \[|\alpha\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} \qquad \rm{and} \qquad |\beta\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}\] Show that \(\left|{\alpha}\right\rangle \) and \(\left|{\beta}\right\rangle \) are orthonormal. (If a pair of vectors is orthonormal, that suggests that they might make a good basis.)
  2. Consider the matrix \[C\doteq \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \] Show that the vectors \(|\alpha\rangle\) and \(|\beta\rangle\) are eigenvectors of C and find the eigenvalues. (Note that showing something is an eigenvector of an operator is far easier than finding the eigenvectors if you don't know them!)
  3. A operator is always represented by a diagonal matrix if it is written in terms of the basis of its own eigenvectors. What does this mean? Find the matrix elements for a new matrix \(E\) that corresponds to \(C\) expanded in the basis of its eigenvectors, i.e. calculate \(\langle\alpha|C|\alpha\rangle\), \(\langle\alpha|C|\beta\rangle\), \(\langle\beta|C|\alpha\rangle\) and \(\langle\beta|C|\beta\rangle\) and arrange them into a sensible matrix \(E\). Explain why you arranged the matrix elements in the order that you did.
  4. Find the determinants of \(C\) and \(E\). How do these determinants compare to the eigenvalues of these matrices?
  • Found in: Quantum Fundamentals course(s)
First complete the problem Diagonalization. In that notation:
  1. Find the matrix \(S\) whose columns are \(|\alpha\rangle\) and \(|\beta\rangle\). Show that \(S^{\dagger}=S^{-1}\) by calculating \(S^{\dagger}\) and multiplying it by \(S\). (Does the order of multiplication matter?)
  2. Calculate \(B=S^{-1} C S\). How is the matrix \(E\) related to \(B\) and \(C\)? The transformation that you have just done is an example of a “change of basis”, sometimes called a “similarity transformation.” When the result of a change of basis is a diagonal matrix, the process is called diagonalization.
  • Found in: Quantum Fundamentals course(s)
Consider the arbitrary Pauli matrix \(\sigma_n=\hat n\cdot\vec \sigma\) where \(\hat n\) is the unit vector pointing in an arbitrary direction.
  1. Find the eigenvalues and normalized eigenvectors for \(\sigma_n\). The answer is: \[ \begin{pmatrix} \cos\frac{\theta}{2}e^{-i\phi/2}\\{} \sin\frac{\theta}{2}e^{i\phi/2}\\ \end{pmatrix} \begin{pmatrix} -\sin\frac{\theta}{2}e^{-i\phi/2}\\{} \cos\frac{\theta}{2}e^{i\phi/2}\\ \end{pmatrix} \] It is not sufficient to show that this answer is correct by plugging into the eigenvalue equation. Rather, you should do all the steps of finding the eigenvalues and eigenvectors as if you don't know the answer. Hint: \(\sin\theta=\sqrt{1-\cos^2\theta}\).
  2. Show that the eigenvectors from part (a) above are orthogonal.
  3. Simplify your results from part (a) above by considering the three separate special cases: \(\hat n=\hat\imath\), \(\hat n=\hat\jmath\), \(\hat n=\hat k\). In this way, find the eigenvectors and eigenvalues of \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\).
  • Found in: Quantum Fundamentals course(s)
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.

Writing an operator in matrix notation in its own basis is easy: it is diagonal with the eigenvalues on the diagonal.

What if I want to calculate the matrix elements using a different basis??

The eigenvalue equation tells me what happens when an operator acts on its own eigenstate. For example: \(\hat{S}_y\left|{\pm}\right\rangle _y=\pm\frac{\hbar}{2}\left|{\pm}\right\rangle _y\)

In Dirac bra-ket notation, to know what an operator does to a ket, I needs to write the ket in the basis that is the eigenstates of the operator (in order to use the eigenvalue equation.)

One way to do this to stick completeness relationships into the braket: \begin{eqnarray*} \left\langle {+}\right|\hat{S_y}\left|{+}\right\rangle = \left\langle {+}\right|(I)\hat{S_y}(I)\left|{+}\right\rangle \end{eqnarray*}

where \(I\) is the identity operator: \(I=\color{blue}{\left|{+}\right\rangle _{yy}\left\langle {+}\right|}\;+\;\color{blue}{\left|{-}\right\rangle _{yy}\left\langle {-}\right|}\). This effectively rewrite the \(\left|{+}\right\rangle \) in the \(\left|{\pm}\right\rangle _y\) basis.

Find the top row matrix elements of the operator \(\hat{S}_y\) in the \(S_z\) basis by inserting completeness relations into the brakets. (The answer is already on the Spins Reference Sheet, but I want you do demonstrate the calculation.)

  • Found in: Completeness Relations sequence(s) Found in: Quantum Fundamentals course(s)

keyboard Computational Activity

120 min.

Position operator
Students find matrix elements of the position operator \(\hat x\) in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.

group Small Group Activity

60 min.

Raising and Lowering Operators for Spin

At low temperatures, a diatomic molecule can be well described as a rigid rotor. The Hamiltonian of such a system is simply proportional to the square of the angular momentum \begin{align} H &= \frac{1}{2I}L^2 \end{align} and the energy eigenvalues are \begin{align} E_{\ell m} &= \hbar^2 \frac{\ell(\ell+1)}{2I} \end{align}

  1. What is the energy of the ground state and the first and second excited states of the \(H_2\) molecule? i.e. the lowest three distinct energy eigenvalues.

  2. At room temperature, what is the relative probability of finding a hydrogen molecule in the \(\ell=0\) state versus finding it in any one of the \(\ell=1\) states?
    i.e. what is \(P_{\ell=0,m=0}/\left(P_{\ell=1,m=-1} + P_{\ell=1,m=0} + P_{\ell=1,m=1}\right)\)

  3. At what temperature is the value of this ratio 1?

  4. At room temperature, what is the probability of finding a hydrogen molecule in any one of the \(\ell=2\) states versus that of finding it in the ground state?
    i.e. what is \(P_{\ell=0,m=0}/\left(P_{\ell=2,m=-2} + P_{\ell=2,m=-1} + \cdots + P_{\ell=2,m=2}\right)\)

  • Found in: Energy and Entropy course(s)