title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Small Group Activity

120 min.

Finding Eigenvectors and Eigenvalues
This is a small group activity for groups of 3-4. The students will be given one of 10 matrices. The students are then instructed to find the eigenvectors and eigenvalues for this matrix and record their calculations on their medium-sized whiteboards. In the class discussion that follows students report their finding and compare and contrast the properties of the eigenvalues and eigenvectors they find. Two topics that should specifically discussed are the case of repeated eigenvalues (degeneracy) and complex eigenvectors, e.g., in the case of some pure rotations, special properties of the eigenvectors and eigenvalues of hermitian matrices, common eigenvectors of commuting operators.
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.
Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.

Small Group Activity

30 min.

Superposition States for a Particle on a Ring
Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.

Small Group Activity

30 min.

Expectation Values for a Particle on a Ring
Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.

Small Group Activity

60 min.

Linear Transformations
Students explore what linear transformation matrices do to vectors. The whole class discussion compares & contrasts several different types of transformations (rotation, flip, projections, “scrinch”, scale) and how the properties of the matrices (the determinant, symmetries, which vectors are unchanged) are related to these transformations.
  1. Find the eigenvalues and normalized eigenvectors of the Pauli matrices \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\) (see the Spins Reference Sheet posted on the course website).

Small Group Activity

60 min.

Quantum Calculations on the Hydrogen Atom

Students are asked to find eigenvalues, probabilities, and expectation values for \(H\), \(L^2\), and \(L_z\) for a superposition of \(\vert n \ell m \rangle\) states. This can be done on small whiteboards or with the students working in groups on large whiteboards.

Students then work together in small groups to find the matrices that correspond to \(H\), \(L^2\), and \(L_z\) and to redo \(\langle E\rangle\) in matrix notation.

Computational Activity

120 min.

Kinetic energy
Students implement a finite-difference approximation for the kinetic energy operator as a matrix, and then use numpy to solve for eigenvalues and eigenstates, which they visualize.

Small Group Activity

30 min.

Working with Representations on the Ring
  • How to form a state as a column vector in matrix representation.
  • How to do probability calculations on all three representations used for quantum systems in PH426.
  • How to find probabilities for and the resultant state after measuring degenerate eigenvalues.