Activities
Students hold rulers and meter sticks to represent a vector field. The instructor holds a hula hoop to represent a small area element. Students are asked to describe the flux of the vector field through the area element.
Students explore the effects of putting a point charge at various places inside, outside, and on the surface of a cubical Gaussian surface. The Mathematica worksheet or Sage activity shows the electric field due to the charge, then plots the the flux integrand on the top surface of the box, calculates the flux through the top of the box, and the value of the flux through the whole cube.
Students calculate the flux from the vector field \(\vec{F} = C\, z\, \hat{z}\) through a right cone of height \(H\) and radius \(R\) .
Problem
Find the upward pointing flux of the electric field \(\vec E =E_0\, z\, \hat z\) through the part of the surface \(z=-3 s^2 +12\) (cylindrical coordinates) that sits above the \((x, y)\)--plane.
Problem
Find the upward pointing flux of the vector field \(\boldsymbol{\vec{H}}=2z\,\boldsymbol{\hat{x}} +\frac{1}{x^2+1}\boldsymbol{\hat{y}}+(3+2z)\boldsymbol{\hat{z}}\) through the rectangle \(R\) with one edge along the \(y\) axis and the other in the \(xz\)-plane along the line \(z=x\), with \(0\le y\le2\) and \(0\le x\le3\).
Students compute surface integrals and explore their interpretation as flux.
- Divergence of a vector field (at a point) is the flux per unit volume through an infinitesimal box.
- How to predict the sign and relative magnitude of the divergence from graphs of a vector field.
- (Optional) How to calculate the divergence of a vector field with computer algebra.