assignment Homework

Diatomic hydrogen
rigid rotor hamiltonian angular momentum ground state hydrogen diatomic probability Energy and Entropy 2021 (2 years)

At low temperatures, a diatomic molecule can be well described as a rigid rotor. The Hamiltonian of such a system is simply proportional to the square of the angular momentum \begin{align} H &= \frac{1}{2I}L^2 \end{align} and the energy eigenvalues are \begin{align} E_{\ell m} &= \hbar^2 \frac{\ell(\ell+1)}{2I} \end{align}

  1. What is the energy of the ground state and the first and second excited states of the \(H_2\) molecule? i.e. the lowest three distinct energy eigenvalues.

  2. At room temperature, what is the relative probability of finding a hydrogen molecule in the \(\ell=0\) state versus finding it in any one of the \(\ell=1\) states?
    i.e. what is \(P_{\ell=0,m=0}/\left(P_{\ell=1,m=-1} + P_{\ell=1,m=0} + P_{\ell=1,m=1}\right)\)

  3. At what temperature is the value of this ratio 1?

  4. At room temperature, what is the probability of finding a hydrogen molecule in any one of the \(\ell=2\) states versus that of finding it in the ground state?
    i.e. what is \(P_{\ell=0,m=0}/\left(P_{\ell=2,m=-2} + P_{\ell=2,m=-1} + \cdots + P_{\ell=2,m=2}\right)\)

assignment Homework

Potential vs. Potential Energy
Static Fields 2022 (4 years)

In this course, two of the primary examples we will be using are the potential due to gravity and the potential due to an electric charge. Both of these forces vary like \(\frac{1}{r}\), so they will have many, many similarities. Most of the calculations we do for the one case will be true for the other. But there are some extremely important differences:

  1. Find the value of the electrostatic potential energy of a system consisting of a hydrogen nucleus and an electron separated by the Bohr radius. Find the value of the gravitational potential energy of the same two particles at the same radius. Use the same system of units in both cases. Compare and the contrast the two answers.
  2. Find the value of the electrostatic potential due to the nucleus of a hydrogen atom at the Bohr radius. Find the gravitational potential due to the nucleus at the same radius. Use the same system of units in both cases. Compare and contrast the two answers.
  3. Briefly discuss at least one other fundamental difference between electromagnetic and gravitational systems. Hint: Why are we bound to the earth gravitationally, but not electromagnetically?

computer Mathematica Activity

30 min.

Visualization of Quantum Probabilities for a Particle Confined to a Ring
Central Forces 2021

central forces quantum mechanics angular momentum probability density eigenstates time evolution superposition mathematica

Quantum Ring Sequence

Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.

face Lecture

5 min.

Quantum Reference Sheet
Central Forces 2021 (2 years)

group Small Group Activity

30 min.

Energy and Angular Momentum for a Quantum Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.