format_list_numbered Sequence

Integration Sequence
Students learn/review how to do integrals in a multivariable context, using the vector differential \(d\vec{r}=dx\, \hat{x}+dy\, \hat{y}+dz\, \hat{z}\) and its curvilinear coordinate analogues as a unifying strategy. This strategy is common among physicists, but is NOT typically taught in vector calculus courses and will be new to most students.

assignment Homework

Sphere in Cylindrical Coordinates
Static Fields 2022 (3 years) Find the surface area of a sphere using cylindrical coordinates.

assignment Homework

Icecream Mass
Static Fields 2022 (5 years)

Use integration to find the total mass of the icecream in a packed cone (both the cone and the hemisphere of icecream on top).

assignment Homework

Potential energy of gas in gravitational field
Potential energy Heat capacity Thermal and Statistical Physics 2020 Consider a column of atoms each of mass \(M\) at temperature \(T\) in a uniform gravitational field \(g\). Find the thermal average potential energy per atom. The thermal average kinetic energy is independent of height. Find the total heat capacity per atom. The total heat capacity is the sum of contributions from the kinetic energy and from the potential energy. Take the zero of the gravitational energy at the bottom \(h=0\) of the column. Integrate from \(h=0\) to \(h=\infty\). You may assume the gas is ideal.

group Small Group Activity

30 min.

Vector Integrals (Contour Map)

E&M Path integrals

keyboard Computational Activity

120 min.

Electrostatic potential of a square of charge
Computational Physics Lab II 2022

integration electrostatic potential surface charge density

Students write python programs to compute the potential due to a square of surface charge, and then to visualize the result. This activity can be used to introduce students to the process of integrating numerically.

assignment Homework

Electric Field of a Finite Line

Consider the finite line with a uniform charge density from class.

  1. Write an integral expression for the electric field at any point in space due to the finite line. In addition to your usual physics sense-making, you must include a clearly labeled figure and discuss what happens to the direction of the unit vectors as you integrate.Consider the finite line with a uniform charge density from class.
  2. Perform the integral to find the \(z\)-component of the electric field. In addition to your usual physics sense-making, you must compare your result to the gradient of the electric potential we found in class. (If you want to challenge yourself, do the \(s\)-component as well!)

group Small Group Activity

30 min.

Number of Paths

E&M Conservative Fields Surfaces

Student discuss how many paths can be found on a map of the vector fields \(\vec{F}\) for which the integral \(\int \vec{F}\cdot d\vec{r}\) is positive, negative, or zero. \(\vec{F}\) is conservative. They do a similar activity for the vector field \(\vec{G}\) which is not conservative.

group Small Group Activity

30 min.

Work By An Electric Field (Contour Map)

E&M Path integrals

Students will estimate the work done by a given electric field. They will connect the work done to the height of a plastic surface graph of the electric potential.

assignment Homework

Approximating a Delta Function with Isoceles Triangles
Static Fields 2022 (5 years)

Remember that the delta function is defined so that \[ \delta(x-a)= \begin{cases} 0, &x\ne a\\ \infty, & x=a \end{cases} \]

Also: \[\int_{-\infty}^{\infty} \delta(x-a)\, dx =1\].

  1. Find a set of functions that approximate the delta function \(\delta(x-a)\) with a sequence of isosceles triangles \(\delta_{\epsilon}(x-a)\), centered at \(a\), that get narrower and taller as the parameter \(\epsilon\) approaches zero.
  2. Using the test function \(f(x)=3x^2\), find the value of \[\int_{-\infty}^{\infty} f(x)\delta_{\epsilon}(x-a)\, dx\] Then, show that the integral approaches \(f(a)\) in the limit that \(\epsilon \rightarrow 0\).

assignment Homework

Flux through a Paraboloid
Static Fields 2022 (5 years)

Find the upward pointing flux of the electric field \(\vec E =E_0\, z\, \hat z\) through the part of the surface \(z=-3 s^2 +12\) (cylindrical coordinates) that sits above the \((x, y)\)--plane.

group Small Group Activity

30 min.

Total Charge
Static Fields 2022 (5 years)

charge charge density multiple integral scalar field coordinate systems differential elements curvilinear coordinates

Integration Sequence

In this small group activity, students integrate over non-uniform charge densities in cylindrical and spherical coordinates to calculate total charge.

group Small Group Activity

30 min.

Superposition States for a Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum hermitian operators probability superposition

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.

assignment Homework

Cube Charge
charge density

Integration Sequence

Static Fields 2022 (5 years)
  1. Charge is distributed throughout the volume of a dielectric cube with charge density \(\rho=\beta z^2\), where \(z\) is the height from the bottom of the cube, and where each side of the cube has length \(L\). What is the total charge inside the cube? Do this problem in two ways as both a single integral and as a triple integral.
  2. In a new physical situation: Charge is distributed on the surface of a cube with charge density \(\sigma=\alpha z\) where \(z\) is the height from the bottom of the cube, and where each side of the cube has length \(L\). What is the total charge on the cube? Don't forget about the top and bottom of the cube.

assignment Homework

Einstein condensation temperature
Einstein condensation Density Thermal and Statistical Physics 2020

Einstein condensation temperature Starting from the density of free particle orbitals per unit energy range \begin{align} \mathcal{D}(\varepsilon) = \frac{V}{4\pi^2}\left(\frac{2M}{\hbar^2}\right)^{\frac32}\varepsilon^{\frac12} \end{align} show that the lowest temperature at which the total number of atoms in excited states is equal to the total number of atoms is \begin{align} T_E &= \frac1{k_B} \frac{\hbar^2}{2M} \left( \frac{N}{V} \frac{4\pi^2}{\int_0^\infty\frac{\sqrt{\xi}}{e^\xi-1}d\xi} \right)^{\frac23} T_E &= \end{align} The infinite sum may be numerically evaluated to be 2.612. Note that the number derived by integrating over the density of states, since the density of states includes all the states except the ground state.

Note: This problem is solved in the text itself. I intend to discuss Bose-Einstein condensation in class, but will not derive this result.

assignment Homework

Basic Calculus: Practice Exercises
Static Fields 2022 (3 years) Determine the following derivatives and evaluate the following integrals.
  1. \(\frac{d}{du}\left(u^2\sin u\right)\)
  2. \(\frac{d}{dz}\left(\ln(z^2+1)\right)\)
  3. \(\displaystyle\int v\cos(v^2)\,dv\)
  4. \(\displaystyle\int v\cos v\,dv\)

assignment Homework

Flux through a Plane
Static Fields 2022 (3 years) Find the upward pointing flux of the vector field \(\boldsymbol{\vec{H}}=2z\,\boldsymbol{\hat{x}} +\frac{1}{x^2+1}\boldsymbol{\hat{y}}+(3+2z)\boldsymbol{\hat{z}}\) through the rectangle \(R\) with one edge along the \(y\) axis and the other in the \(xz\)-plane along the line \(z=x\), with \(0\le y\le2\) and \(0\le x\le3\).

assignment Homework

Vapor pressure equation
phase transformation Clausius-Clapeyron Thermal and Statistical Physics 2020 Consider a phase transformation between either solid or liquid and gas. Assume that the volume of the gas is way bigger than that of the liquid or solid, such that \(\Delta V \approx V_g\). Furthermore, assume that the ideal gas law applies to the gas phase. Note: this problem is solved in the textbook, in the section on the Clausius-Clapeyron equation.
  1. Solve for \(\frac{dp}{dT}\) in terms of the pressure of the vapor and the latent heat \(L\) and the temperature.

  2. Assume further that the latent heat is roughly independent of temperature. Integrate to find the vapor pressure itself as a function of temperature (and of course, the latent heat).

assignment Homework

Energy of a relativistic Fermi gas
Fermi gas Relativity Thermal and Statistical Physics 2020

For electrons with an energy \(\varepsilon\gg mc^2\), where \(m\) is the mass of the electron, the energy is given by \(\varepsilon\approx pc\) where \(p\) is the momentum. For electrons in a cube of volume \(V=L^3\) the momentum takes the same values as for a non-relativistic particle in a box.

  1. Show that in this extreme relativistic limit the Fermi energy of a gas of \(N\) electrons is given by \begin{align} \varepsilon_F &= \hbar\pi c\left(\frac{3n}{\pi}\right)^{\frac13} \end{align} where \(n\equiv \frac{N}{V}\) is the number density.

  2. Show that the total energy of the ground state of the gas is \begin{align} U_0 &= \frac34 N\varepsilon_F \end{align}

computer Computer Simulation

30 min.

Visualizing Flux through a Cube
Static Fields 2022 (5 years) Students explore the effects of putting a point charge at various places inside, outside, and on the surface of a cubical Gaussian surface. The Mathematica worksheet or Sage activity shows the electric field due to the charge, then plots the the flux integrand on the top surface of the box, calculates the flux through the top of the box, and the value of the flux through the whole cube.