assignment Homework

Cross Triangle
Static Fields 2023 (6 years)

Use the cross product to find the components of the unit vector \(\mathbf{\boldsymbol{\hat n}}\) perpendicular to the plane shown in the figure below, i.e.  the plane joining the points \(\{(1,0,0),(0,1,0),(0,0,1)\}\).

assignment Homework

Wavefunctions
Quantum Fundamentals 2023 (3 years)

Consider the following wave functions (over all space - not the infinite square well!):

\(\psi_a(x) = A e^{-x^2/3}\)

\(\psi_b(x) = B \frac{1}{x^2+2} \)

\(\psi_c(x) = C \;\mbox{sech}\left(\frac{x}{5}\right)\) (“sech” is the hyperbolic secant function.)

In each case:

  1. normalize the wave function,
  2. plot the wave function using Mathematica or other computer plotting tool (be sure to include the code you used and label your plots/axes appropriately),
  3. find the probability that the particle is measured to be in the range \(0<x<1\).

assignment_ind Small White Board Question

5 min.

Normalization of the Gaussian for Wavefunctions
Periodic Systems 2022

Fourier Transforms and Wave Packets

Students find a wavefunction that corresponds to a Gaussian probability density.

assignment Homework

Normalization of Quantum States
Central Forces 2023 (3 years) Show that if a linear combination of ring energy eigenstates is normalized, then the coefficients must satisfy \begin{equation} \sum_{m=-\infty}^{\infty} \vert c_m\vert^2=1 \end{equation}

group Small Group Activity

10 min.

Fourier Transform of a Derivative
Periodic Systems 2022

Fourier Transforms and Wave Packets

assignment Homework

Einstein condensation temperature
Einstein condensation Density Thermal and Statistical Physics 2020

Einstein condensation temperature Starting from the density of free particle orbitals per unit energy range \begin{align} \mathcal{D}(\varepsilon) = \frac{V}{4\pi^2}\left(\frac{2M}{\hbar^2}\right)^{\frac32}\varepsilon^{\frac12} \end{align} show that the lowest temperature at which the total number of atoms in excited states is equal to the total number of atoms is \begin{align} T_E &= \frac1{k_B} \frac{\hbar^2}{2M} \left( \frac{N}{V} \frac{4\pi^2}{\int_0^\infty\frac{\sqrt{\xi}}{e^\xi-1}d\xi} \right)^{\frac23} T_E &= \end{align} The infinite sum may be numerically evaluated to be 2.612. Note that the number derived by integrating over the density of states, since the density of states includes all the states except the ground state.

Note: This problem is solved in the text itself. I intend to discuss Bose-Einstein condensation in class, but will not derive this result.

assignment Homework

Ring Function
Central Forces 2023 (3 years) Consider the normalized wavefunction \(\Phi\left(\phi\right)\) for a quantum mechanical particle of mass \(\mu\) constrained to move on a circle of radius \(r_0\), given by: \begin{equation} \Phi\left(\phi\right)= \frac{N}{2+\cos(3\phi)} \end{equation} where \(N\) is the normalization constant.
  1. Find \(N\).

  2. Plot this wave function.
  3. Plot the probability density.
  4. Find the probability that if you measured \(L_z\) you would get \(3\hbar\).
  5. What is the expectation value of \(L_z\) in this state?

accessibility_new Kinesthetic

10 min.

Using Arms to Represent Time Dependence in Spin 1/2 Systems
Quantum Fundamentals 2023 (2 years)

Arms Representation quantum states time dependence Spin 1/2

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, use their left arms to demonstrate time evolution in spin 1/2 quantum systems.

assignment Homework

Approximating a Delta Function with Isoceles Triangles
Static Fields 2023 (6 years)

Remember that the delta function is defined so that \[ \delta(x-a)= \begin{cases} 0, &x\ne a\\ \infty, & x=a \end{cases} \]

Also: \[\int_{-\infty}^{\infty} \delta(x-a)\, dx =1\].

  1. Find a set of functions that approximate the delta function \(\delta(x-a)\) with a sequence of isosceles triangles \(\delta_{\epsilon}(x-a)\), centered at \(a\), that get narrower and taller as the parameter \(\epsilon\) approaches zero.
  2. Using the test function \(f(x)=3x^2\), find the value of \[\int_{-\infty}^{\infty} f(x)\delta_{\epsilon}(x-a)\, dx\] Then, show that the integral approaches \(f(a)\) in the limit that \(\epsilon \rightarrow 0\).

group Small Group Activity

30 min.

\(|\pm\rangle\) Forms an Orthonormal Basis
Quantum Fundamentals 2023 (3 years)

Cartesian Basis $S_z$ basis completeness normalization orthogonality basis

Completeness Relations

Student explore the properties of an orthonormal basis using the Cartesian and \(S_z\) bases as examples.

group Small Group Activity

30 min.

Working with Representations on the Ring
Central Forces 2023 (3 years)

group Small Group Activity

30 min.

Visualization of Divergence
Vector Calculus II 23 (9 years) Students predict from graphs of simple 2-d vector fields whether the divergence is positive, negative, or zero in various regions of the domain using the definition of the divergence of a vector field at a point: The divergence of a vector field at a point is flux per unit volume through an infinitesimal box surrounding that point. Optionally, students can use a Mathematica notebook to verify their predictions.

group Small Group Activity

5 min.

Acting Out Flux
Static Fields 2023 (4 years)

flux electrostatics vector fields

Students hold rulers and meter sticks to represent a vector field. The instructor holds a hula hoop to represent a small area element. Students are asked to describe the flux of the vector field through the area element.

computer Computer Simulation

30 min.

Visualizing Flux through a Cube
Static Fields 2023 (6 years) Students explore the effects of putting a point charge at various places inside, outside, and on the surface of a cubical Gaussian surface. The Mathematica worksheet or Sage activity shows the electric field due to the charge, then plots the the flux integrand on the top surface of the box, calculates the flux through the top of the box, and the value of the flux through the whole cube.

assignment Homework

Divergence through a Prism
Static Fields 2023 (6 years)

Consider the vector field \(\vec F=(x+2)\hat{x} +(z+2)\hat{z}\).

  1. Calculate the divergence of \(\vec F\).
  2. In which direction does the vector field \(\vec F\) point on the plane \(z=x\)? What is the value of \(\vec F\cdot \hat n\) on this plane where \(\hat n\) is the unit normal to the plane?
  3. Verify the divergence theorem for this vector field where the volume involved is drawn below. (“Verify” means calculate both sides of the divergence theorem, separately, for this example and show that they are the same.)

face Lecture

30 min.

Time Evolution Refresher (Mini-Lecture)
Central Forces 2023 (3 years)

schrodinger equation time dependence stationary states

Quantum Ring Sequence

The instructor gives a brief lecture about time dependence of energy eigenstates (e.g. McIntyre, 3.1). Notes for the students are attached.

assignment Homework

Flux through a Paraboloid
Static Fields 2021 (5 years)

Find the upward pointing flux of the electric field \(\vec E =E_0\, z\, \hat z\) through the part of the surface \(z=-3 s^2 +12\) (cylindrical coordinates) that sits above the \((x, y)\)--plane.

group Small Group Activity

120 min.

Representations of the Infinite Square Well
Quantum Fundamentals 2023 (3 years)

Warm-Up

assignment Homework

Energy, Entropy, and Probabilities
Energy Entropy Probabilities Thermodynamic identity

The goal of this problem is to show that once we have maximized the entropy and found the microstate probabilities in terms of a Lagrange multiplier \(\beta\), we can prove that \(\beta=\frac1{kT}\) based on the statistical definitions of energy and entropy and the thermodynamic definition of temperature embodied in the thermodynamic identity.

The internal energy and entropy are each defined as a weighted average over microstates: \begin{align} U &= \sum_i E_i P_i & S &= -k_B\sum_i P_i \ln P_i \end{align}: We saw in clase that the probability of each microstate can be given in terms of a Lagrange multiplier \(\beta\) as \begin{align} P_i &= \frac{e^{-\beta E_i}}{Z} & Z &= \sum_i e^{-\beta E_i} \end{align} Put these probabilities into the above weighted averages in order to relate \(U\) and \(S\) to \(\beta\). Then make use of the thermodynamic identity \begin{align} dU = TdS - pdV \end{align} to show that \(\beta = \frac1{kT}\).