Activities
Students re-represent a state given in Dirac notation in matrix notation
- How to form a state as a column vector in matrix representation.
- How to do probability calculations on all three representations used for quantum systems in PH426.
- How to find probabilities for and the resultant state after measuring degenerate eigenvalues.
- How to translate a complicated wavefunction into eigenstates.
- Refresher on how to find expectation values and probabilities in a region.
- How to use the symmetry of the wavefunction to tell you something about measurements.
None
In this small group activity, students draw components of a vector in Cartesian and polar bases. Students then write the components of the vector in these bases as both dot products with unit vectors and as bra/kets with basis bras.
The following are 3 different representations for the \(\textbf{same}\) state on a quantum ring for \(r_0=1\) \begin{equation} \left|{\Phi_a}\right\rangle = i\sqrt{\frac{ 2}{12}}\left|{3}\right\rangle - \sqrt{\frac{ 1}{12}}\left|{1}\right\rangle +\sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}}\left|{0}\right\rangle -i\sqrt{\frac{ 2}{ 12}}\left|{-1}\right\rangle +\sqrt{\frac{ 4}{12}}\left|{-3}\right\rangle \end{equation} \begin{equation} \left| \Phi_b\right\rangle \doteq \left( \begin{matrix} \vdots \\ i\sqrt{\frac{ 2}{12}}\\ 0 \\ -\sqrt{\frac{ 1}{12}} \\ \sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}} \\ -i\sqrt{\frac{ 2}{12}}\\ 0 \\ \sqrt{\frac{4}{12} }\\ \vdots \end{matrix}\right) \begin{matrix} \leftarrow m=0 \end{matrix} \end{equation} \begin{equation} \Phi_c(\phi) \doteq \sqrt{\frac{1}{24 \pi}} \left( i\sqrt{2}e^{i 3 \phi} -e^{i\phi} +\sqrt{3}e^{i\frac{\pi}{4}} -i \sqrt{2} e^{-i\phi} + \sqrt{4}e^{-i 3 \phi} \right) \end{equation}
- With each representation of the state given above, explicitly calculate the probability that \(L_z=-1\hbar\). Then, calculate all other non-zero probabilities for values of \(L_z\) with a method/representation of your choice.
- Explain how you could be sure you calculated all of the non-zero probabilities.
- If you measured the \(z\)-component of angular momentum to be \(3\hbar\), what would the state of the particle be immediately after the measurement is made?
- With each representation of the state given above, explicitly calculate the probability that \(E=\frac{9}{2}\frac{\hbar^2}{I}\). Then, calculate all other non-zero probabilities for values of \(E\) with a method of your choice.
If you measured the energy of the state to be \(\frac{9}{2}\frac{\hbar^2}{I}\), what would the state of the particle be immediately after the measurement is made?
Students draw the 3D graphs of equations using three variables. They make choices for drawing a stack of curves in parallel planes and a curve in a perpendicular plane (e.g. substituting in values for \(x\), \(y\), or \(z\). )
Representations of the Infinite Square WellConsider three particles of mass \(m\) which are each in an infinite square well potential at \(0<x<L\).
The energy eigenstates of the infinite square well are:
\[ \left\langle {x}\middle|{E_n}\right\rangle =\phi_n(x) = \sqrt{\frac{2}{L}}\sin{\left(\frac{n \pi x}{L}\right)}\]
with energy eigenvalues \(E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}\)
The particles are initially in the states, respectively: \begin{eqnarray*} |\psi_a(0)\rangle &=& A \Big[\left|{E_1}\right\rangle + 2i \left|{E_4}\right\rangle - 3\left|{E_{10}}\right\rangle \Big]\\[6pt] \psi_b(x,0) &=& B \left[\sqrt{\frac{2}{L}}\sin{\left(\frac{\pi x}{L}\right)} + i \sqrt{\frac{8}{L}}\sin{\left(\frac{4\pi x}{L}\right)} - \sqrt{\frac{18}{L}}\sin{\left(\frac{10\pi x}{L}\right)} \right]\\[6pt] \psi_c(x,0) &=& C x(x-L) \end{eqnarray*}
For each particle:
- Determine the value of the normalization constant.
- At \(t=0\), what is the probability of measuring the energy of the particle to be \(\frac{8\pi^2\hbar^2}{mL^2}\)?
- Find the state of the particle at a later time \(t\).
- What is the probability of measuring the energy of the particle to be the same value \(\frac{8\pi^2\hbar^2}{mL^2}\) at a later time \(t\)?
- What is the probability of finding the particle to be in the left half of the well?
Student Conversations
- Help students recognize that particle \(a\) and particle \(b\) are in the same state.
- For normalization, emphasize that you must calculate the square of the norm of the state BEFORE you integrate.
- The energy value given is simplified - students need to recognize that this energy corresponds to \(n=4\).
- Time evolving particle \(c\) is brutal for the students. Reassure students that they have to leave it as a sum. Setting up the integral is the point here. For time expediancy, encourage students to leave the integral to be evaluated later.
- For Hamiltonian's that don't don't depend on time, the probabilities of measuring energies are time independent.
- Emphasize to students that you can't calculate the probability of finding a particle in a region in Dirac notation.
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.
Students each recall a representation of vectors that they have seen before and record it on an individual whiteboard. The instructor uses these responses to generate a whole class discussion that compares and contrasts the features of the representations. If appropriate for the class, the instructor introduces bra/ket notation as a new, but valuable representation.
Students, working in pairs, use the Arms representations to represent states of spin 1/2 system. Through a short series of instructor-led prompts, students explore the difference between overall phase (which does NOT distinguish quantum states) and relative phase (which does distinguish quantum states).
This small whiteboard question (SWBQ) serves as a quick review of the dot product. It is also an opportunity to help students see the advantages of knowing many different representations of and facts about a physical concept.
This is the first activity relating the surfaces to the corresponding contour diagrams, thus emphasizing the use of multiple representations.
Students work in small groups to interpret level curves representing different concentrations of lead.
This small group activity using surfaces introduces a geometric interpretation of partial derivatives in terms of measured ratios of small changes. Students work in small groups to identify locations on their surface with particular properties. The whole class wrap-up discussion emphasizes the equivalence of multiple representations of partial derivatives.
This small group activity using surfaces combines practice with the multivariable chain rule while emphasizing numerical representations of derivatives. Students work in small groups to measure partial derivatives in both rectangular and polar coordinates, then verify their results using the chain rule. The whole class wrap-up discussion emphasizes the relationship between a directional derivative in the \(r\)-direction and derivatives in \(x\)- and \(y\)-directions using the chain rule.
Students move their left arm in a circle to trace out the complex plane (Argand diagram). They then explore the rectangular and exponential representations of complex numbers by using their left arm to show given complex numbers on the complex plane. Finally they enact multiplication of complex numbers in exponential form and complex conjugation.
Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.
Mathematica Activity
30 min.
Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.