title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Small Group Activity

30 min.

Vector Surface and Volume Elements
Students use \(d\boldsymbol{\vec{A} }= d\boldsymbol{\vec{r}}_1 \times d\boldsymbol{\vec{r}}_2\) and \(d\tau=(d\boldsymbol{\vec{r}}_1\times d\boldsymbol{\vec{r}}_2)\cdot d\boldsymbol{\vec{r}}_3\) to find differential surface and volume elements for cylinders and spheres.
  • Found in: AIMS Maxwell, Static Fields, Surfaces/Bridge Workshop, Problem-Solving course(s) Found in: Integration Sequence sequence(s)

Small Group Activity

30 min.

Scalar Surface and Volume Elements
  • How to find area, and volume elements in curvilinear coordinates using geometric methods.
  • Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s) Found in: Integration Sequence sequence(s)

Small Group Activity

30 min.

A glass of water
Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.

Small Group Activity

30 min.

Curvilinear Volume Elements
Students practice infinitesimal reasoning in cylindrical and spherical coordinates.
  • Found in: Vector Calculus I, Static Fields course(s)
None

Problem

5 min.

Volume Charge Density
None
  • Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)
None
  • Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)

Kinesthetic

10 min.

Acting Out Charge Densities
Students, pretending they are point charges, move around the room acting out various prompts from the instructor regarding charge densities, including linear \(\lambda\), surface \(\sigma\), and volume \(\rho\) charge densities, both uniform and non-uniform. The instructor demonstrates what it means to measure these quantities. In a remote setting, we have students manipulate 10 coins to model the prompts in this activity and we demonstrate the answers with coins under a doc cam.

Kinesthetic

10 min.

Acting Out Current Density
Students, pretending they are point charges, move around the room so as to make an imaginary magnetic field meter register a constant magnetic field, introducing the concept of steady current. Students act out linear \(\vec{I}\), surface \(\vec{K}\), and volume \(\vec{J}\) current densities. The instructor demonstrates what it means to measure these quantities by counting how many students pass through a gate.

Small Group Activity

30 min.

Visualization of Divergence
  • Divergence of a vector field (at a point) is the flux per unit volume through an infinitesimal box.
  • How to predict the sign and relative magnitude of the divergence from graphs of a vector field.
  • (Optional) How to calculate the divergence of a vector field with computer algebra.
  • Found in: Static Fields, AIMS Maxwell, Vector Calculus II, Surfaces/Bridge Workshop, Problem-Solving, None course(s) Found in: Geometry of Vector Fields Sequence, Flux Sequence sequence(s)

Small Group Activity

30 min.

Covariation in Thermal Systems
Students consider how changing the volume of a system changes the internal energy of the system. Students use plastic graph models to explore these functions.

Small Group Activity

30 min.

Heat and Temperature of Water Vapor
In this introduction to heat capacity, students determine a derivative that indicates how much the internal energy changes as the temperature changes when volume is held constant.

Small Group Activity

30 min.

The Cylinder
This small group activity is designed to help students visual the process of chopping, adding, and multiplying in single integrals. Students work in small groups to determine the volume of a cylinder in as many ways as possible. The whole class wrap-up discussion emphasizes the equivalence of different ways of chopping the cylinder.
  • Found in: Vector Calculus I course(s)