Each group will be given one of the charge distributions given below: (\(\alpha\) and \(k\) are constants with dimensions appropriate for the specific example.)
A positively charged (dielectric) spherical shell of inner radius \(a\) and outer radius \(b\) with a spherically symmetric internal charge density \(\rho (\vec{r}) = \alpha\, r^{3}\)
A positively charged (dielectric) spherical shell of inner radius \(a\) and outer radius \(b\) with a spherically symmetric internal charge density \(\rho (\vec{r}) =\alpha\, e^{(kr)^{3}}\)
Cylindrical Symmetry
A positively charged (dielectric) cylindrical shell of inner radius \(a\) and outer radius \(b\) with a cylindrically symmetric internal charge density \(\rho (\vec{r}) = \alpha\, s^{3}\)
A positively charged (dielectric) cylindrical shell of inner radius \(a\) and outer radius \(b\) with a cylindrically symmetric internal charge density \(\rho (\vec{r}) =\alpha\, e^{(ks)^{2}}\)
A positively charged (dielectric) cylindrical shell of inner radius \(a\) and outer radius \(b\) with a cylindrically symmetric internal charge density \(\rho (\vec{r}) = \alpha\, \frac{1}{s}\, e^{(ks)}\)
For your group's case, answer the following questions: