Student handout: Raising and Lowering Operators for Spin

Central Forces 2022
What students learn How raising and lowering operators work and how they are formed with orbital angular momentum. An overview of patterns seen in angular momentum operators. A refresher on commutators and matrix multiplication.

For \(\ell=1\), the operators that measure the three components of angular momentum in matrix notation are given by: \begin{align} L_x&=\frac{\hbar}{\sqrt{2}}\left( \begin{matrix} 0&1&0\\ 1&0&1\\ 0&1&0 \end{matrix} \right)\\ L_y&=\frac{\hbar}{\sqrt{2}}\left( \begin{matrix} 0&-i&0\\ i&0&-i\\ 0&i&0 \end{matrix} \right)\\ L_z&=\;\;\;\hbar\left( \begin{matrix} 1&0&0\\ 0&0&0\\ 0&0&-1 \end{matrix} \right) \end{align}

Show that:

  1. Find the commutator of \(L_x\) and \(L_y\).
  2. Find the matrix representation of \(L^2=L_x^2+L_y^2+L_z^2\).
  3. Find the matrix representations of the raising and lowering operators \(L_{\pm}=L_x\pm iL_y\). (Notice that \(L_{\pm}\) are NOT Hermitian and therefore cannot represent observables. They are used as a tool to build one quantum state from another.)
  4. Show that \([L_z, L_{\pm}]=\lambda L_{\pm}\). Find \(\lambda\). Interpret this expression as an eigenvalue equation. What is the operator?
  5. Let \(L_{+}\) act on the following three states given in matrix representation. \begin{equation} \left|{1,1}\right\rangle =\left( \begin{matrix} 1\\0\\0 \end{matrix} \right)\qquad \left|{1,0}\right\rangle =\left( \begin{matrix} 0\\1\\0 \end{matrix} \right)\qquad \left|{1,-1}\right\rangle =\left( \begin{matrix} 0\\0\\1 \end{matrix} \right) \end{equation} Why is \(L_{+}\) called a “raising operator”?


Keywords
Angular Momentum Sphere Raising and Lowering Operators Commutators
Learning Outcomes