assignment Homework

Gibbs free energy
thermodynamics Maxwell relation Energy and Entropy 2020 The Gibbs free energy, \(G\), is given by \begin{align*} G = U + pV - TS. \end{align*}
  1. Find the total differential of \(G\). As always, show your work.
  2. Interpret the coefficients of the total differential \(dG\) in order to find a derivative expression for the entropy \(S\).
  3. From the total differential \(dG\), obtain a different thermodynamic derivative that is equal to \[ \left(\frac{\partial {S}}{\partial {p}}\right)_{T} \]

assignment Homework

Derivative of Fermi-Dirac function
Fermi-Dirac function Thermal and Statistical Physics 2020 Derivative of Fermi-Dirac function Show that the magnitude of the slope of the Fermi-Direc function \(f\) evaluated at the Fermi level \(\varepsilon =\mu\) is inversely proportional to its temperature. This means that at lower temperatures the Fermi-Dirac function becomes dramatically steeper.

format_list_numbered Sequence

Gradient Sequence
This sequence starts with an introduction to partial derivatives and continues through gradient. While some of the activities/problems are pure math, a number of other activities/problems are situated in the context of electrostatics. This sequence is intended to be used intermittently across multiple days or even weeks of a course or even multiple courses.

assignment_ind Small White Board Question

10 min.

Partial Derivatives from a Contour Map
Static Fields 2023 (4 years)

Gradient Sequence

In this sequence of small whiteboard questions, students are shown the contour graph of a function of two variables and asked to find the derivative. They discover that, without a function to differentiate, they must instead think of the derivative as a ratio of small changes. This requires them to pick two nearby points. Which two?

assignment Homework

Rubber Sheet
Energy and Entropy 2021 (2 years)

Consider a hanging rectangular rubber sheet. We will consider there to be two ways to get energy into or out of this sheet: you can either stretch it vertically or horizontally. The distance of vertical stretch we will call \(y\), and the distance of horizontal stretch we will call \(x\).

If I pull the bottom down by a small distance \(\Delta y\), with no horizontal force, what is the resulting change in width \(\Delta x\)? Express your answer in terms of partial derivatives of the potential energy \(U(x,y)\).

group Small Group Activity

30 min.

Name the experiment
Energy and Entropy 2021 (3 years)

partial derivatives experiment thermodynamics

Student groups design an experiment that measures an assigned partial derivative. In a compare-and-contrast wrap-up, groups report on how they would measure their derivatives.

assignment Homework

Entropy and Temperature
Energy Temperature Ideal gas Entropy Thermal and Statistical Physics 2020

Suppose \(g(U) = CU^{3N/2}\), where \(C\) is a constant and \(N\) is the number of particles.

  1. Show that \(U=\frac32 N k_BT\).

  2. Show that \(\left(\frac{\partial^2S}{\partial U^2}\right)_N\) is negative. This form of \(g(U)\) actually applies to a monatomic ideal gas.

group Small Group Activity

30 min.

Name the experiment (changing entropy)
Energy and Entropy 2021 (2 years)

thermodynamics entropy experiment derivative first law

Students are placed into small groups and asked to create an experimental setup they can use to measure the partial derivative they are given, in which entropy changes.

group Small Group Activity

10 min.

Generalized Leibniz Notation
Static Fields 2023 (6 years) This short small group activity introduces students to the Leibniz notation used for partial derivatives in thermodynamics; unlike standard Leibniz notation, this notation explicitly specifies constant variables. Students are guided in linking the variables from a contextless Leibniz-notation partial derivative to their proper variable categories.

group Small Group Activity

10 min.

Fourier Transform of a Derivative
Periodic Systems 2022

Fourier Transforms and Wave Packets

face Lecture

30 min.

Lorentz Transformation (Geometric)
Theoretical Mechanics (3 years)

Special Relativity Lorentz Transformation Hyperbola Trig

In this lecture, students see a geometric derivation of the Lorentz Transformation on a spacetime diagram.

assignment Homework

The Path

Gradient Sequence

Vector Calculus I 2022 You are climbing a hill along the steepest path, whose slope at your current location is \(1\over5\). There is another path branching off at an angle of \(30^\circ\) (\(\pi\over6\)). How steep is it?

group Small Group Activity

30 min.

Quantifying Change

Thermo Derivatives

In this activity, students will explore how to calculate a derivative from measured data. Students should have prior exposure to differential calculus. At the start of the activity, orient the students to the contour plot - it's busy.

assignment Homework

Derivatives from Data (NIST)
Energy and Entropy 2021 (2 years) Use the NIST web site “Thermophysical Properties of Fluid Systems” to answer the following questions. This site is an excellent resource for finding experimentally measured properties of fluids.
  1. Find the partial derivatives \[\left(\frac{\partial {S}}{\partial {T}}\right)_{p}\] \[\left(\frac{\partial {S}}{\partial {T}}\right)_{V}\] where \(p\) is the pressure, \(V\) is the volume, \(S\) is the entropy, and \(T\) is the temperature. Please find these derivatives for one gram of methanol at one atmosphere of pressure and at room temperature.
  2. Why does it take only two variables to define the state?
  3. Why are the derivatives above different?
  4. What do the words isobaric, isothermal, and isochoric mean?

group Small Group Activity

30 min.

Directional Derivatives
Vector Calculus I 2022

Directional derivatives

Gradient Sequence

This small group activity using surfaces relates the geometric definition of directional derivatives to the components of the gradient vector. Students work in small groups to measure a directional derivative directly, then compare its components with measured partial derivatives in rectangular coordinates. The whole class wrap-up discussion emphasizes the relationship between the geometric gradient vector and directional derivatives.

face Lecture

5 min.

Wavelength of peak intensity
Contemporary Challenges 2021 (3 years)

Wein's displacement law blackbody radiation

This very short lecture introduces Wein's displacement law.

assignment Homework

Homogeneous Linear ODE's with Constant Coefficients
ODEs math bits Oscillations and Waves 2023 (2 years)

Homogeneous, linear ODEs with constant coefficients were likely covered in your Differential Equations course (MTH 256 or equiv.). If you need a review, please see:

Constant Coefficients, Homogeneous

or your differential equations text.

Answer the following questions for each differential equation below:

  • identify the order of the equation,
  • find the number of linearly independent solutions,
  • find an appropriate set of linearly independent solutions, and
  • find the general solution.
Each equation has different notations so that you can become familiar with some common notations.
  1. \(\ddot{x}-\dot{x}-6x=0\)
  2. \(y^{\prime\prime\prime}-3y^{\prime\prime}+3y^{\prime}-y=0\)
  3. \(\frac{d^2w}{dz^2}-4\frac{dw}{dz}+5w=0\)

accessibility_new Kinesthetic

5 min.

Time Dilation Light Clock Skit

Special Relativity Time Dilation Light Clock Kinesthetic Activity

Students act out the classic light clock scenario for deriving time dilation.

group Small Group Activity

30 min.

“Squishability” of Water Vapor (Contour Map)

Thermo Partial Derivatives

Students determine the “squishibility” (an extensive compressibility) by taking \(-\partial V/\partial P\) holding either temperature or entropy fixed.

assignment Homework

Einstein condensation temperature
Einstein condensation Density Thermal and Statistical Physics 2020

Einstein condensation temperature Starting from the density of free particle orbitals per unit energy range \begin{align} \mathcal{D}(\varepsilon) = \frac{V}{4\pi^2}\left(\frac{2M}{\hbar^2}\right)^{\frac32}\varepsilon^{\frac12} \end{align} show that the lowest temperature at which the total number of atoms in excited states is equal to the total number of atoms is \begin{align} T_E &= \frac1{k_B} \frac{\hbar^2}{2M} \left( \frac{N}{V} \frac{4\pi^2}{\int_0^\infty\frac{\sqrt{\xi}}{e^\xi-1}d\xi} \right)^{\frac23} T_E &= \end{align} The infinite sum may be numerically evaluated to be 2.612. Note that the number derived by integrating over the density of states, since the density of states includes all the states except the ground state.

Note: This problem is solved in the text itself. I intend to discuss Bose-Einstein condensation in class, but will not derive this result.