title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Small Group Activity

60 min.

##### Raising and Lowering Operators for Spin

For $\ell=1$, the operators that measure the three components of angular momentum in matrix notation are given by: \begin{align} L_x&=\frac{\hbar}{\sqrt{2}}\left( \begin{matrix} 0&1&0\\ 1&0&1\\ 0&1&0 \end{matrix} \right)\\ L_y&=\frac{\hbar}{\sqrt{2}}\left( \begin{matrix} 0&-i&0\\ i&0&-i\\ 0&i&0 \end{matrix} \right)\\ L_z&=\;\;\;\hbar\left( \begin{matrix} 1&0&0\\ 0&0&0\\ 0&0&-1 \end{matrix} \right) \end{align}

Show that:

1. Find the commutator of $L_x$ and $L_y$.
2. Find the matrix representation of $L^2=L_x^2+L_y^2+L_z^2$.
3. Find the matrix representations of the raising and lowering operators $L_{\pm}=L_x\pm iL_y$. (Notice that $L_{\pm}$ are NOT Hermitian and therefore cannot represent observables. They are used as a tool to build one quantum state from another.)
4. Show that $[L_z, L_{\pm}]=\lambda L_{\pm}$. Find $\lambda$. Interpret this expression as an eigenvalue equation. What is the operator?
5. Let $L_{+}$ act on the following three states given in matrix representation. $$\left|{1,1}\right\rangle =\left( \begin{matrix} 1\\0\\0 \end{matrix} \right)\qquad \left|{1,0}\right\rangle =\left( \begin{matrix} 0\\1\\0 \end{matrix} \right)\qquad \left|{1,-1}\right\rangle =\left( \begin{matrix} 0\\0\\1 \end{matrix} \right)$$ Why is $L_{+}$ called a “raising operator”?

## Instructor's Guide

### Introduction

This activity is meant to lay the foundation of what raising and lowering oporators are and how they can be used. This material will become very important for students' study of symmetry matrices in PH427 and the Quantum Harmonic Oscillator in the Quantum Capstone.

### Student Conversations

At this stage, students will not have seen commutators or done much matrix multiplication in a while, so students may progress lower here than you'd expect. It will be important for the teaching team to be on the look out for groups that are confused at the beginning since some will forget that a commutator can have the form $[A,B]=AB-BA$, which is necessary to progress.

Making sure the teaching team has a good handle on the results of each calculation so they can help trouble shoot errors made during matrix multiplication which are hard to catch in the act and usually can most easilty be inferred from an erronous result (which the students themselves won't usually recognize).

### Wrap-up

It is a good idea to reinforce the patterns seen in orbital angular momentum to their experiences with spin angular momentum, such as that cross product-like relationship between commutators of cartesian directed angular momenta. Then it becomes easy to contrast those patterns with that of the raising and lower operators and emphasize that these are not observables which correspond to measures of angular momentum but a different object entirely.

While their importance should be emphasized for study of periodic systems and the quantum harmonic oscilator, it should also be mentioned these operators will not be a major focus of this course or our study of the Hydrogen atom as we head into the home stretch of the course. This content is largely a very important detour.

• Found in: Central Forces course(s)

Small Group Activity

30 min.

##### Outer Product of a Vector on Itself
Students compute the outer product of a vector on itself to product a projection operator. Students discover that projection operators are idempotent (square to themselves) and that a complete set of outer products of an orthonormal basis is the identity (a completeness relation).
• Found in: Quantum Fundamentals course(s) Found in: Completeness Relations sequence(s)

Small Group Activity

10 min.

##### Matrix Representation of Angular Momentum
This activity allows students to puzzle through indexing, the from of operators in quantum mechanics, and working with the new quantum numbers on the sphere in an applied context.
• Found in: Central Forces course(s)

Small Group Activity

30 min.

##### Energy and Angular Momentum for a Quantum Particle on a Ring
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.
• Found in: Theoretical Mechanics course(s) Found in: Quantum Ring Sequence sequence(s)

Small Group Activity

30 min.

##### Time Dependence for a Quantum Particle on a Ring Part 1
Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.
• Found in: Central Forces, Theoretical Mechanics course(s) Found in: Quantum Ring Sequence sequence(s)

Small Group Activity

30 min.

##### Superposition States for a Particle on a Ring
Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.
• Found in: Quantum Ring Sequence sequence(s)

Small Group Activity

30 min.

##### Expectation Values for a Particle on a Ring
Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.
• Found in: Central Forces, Theoretical Mechanics course(s) Found in: Quantum Ring Sequence sequence(s)

Small Group Activity

30 min.

##### Quantum Measurement Play
The instructor and students do a skit where students represent quantum states that are “measured” by the instructor resulting in a state collapse.
• Found in: Quantum Fundamentals course(s)

Small Group Activity

30 min.