title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Small Group Activity

30 min.

A glass of water
Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.

Consider a system which has an internal energy \(U\) defined by: \begin{align} U &= \gamma V^\alpha S^\beta \end{align} where \(\alpha\), \(\beta\) and \(\gamma\) are constants. The internal energy is an extensive quantity. What constraint does this place on the values \(\alpha\) and \(\beta\) may have?

  • Found in: Energy and Entropy course(s)

Consider two noninteracting systems \(A\) and \(B\). We can either treat these systems as separate, or as a single combined system \(AB\). We can enumerate all states of the combined by enumerating all states of each separate system. The probability of the combined state \((i_A,j_B)\) is given by \(P_{ij}^{AB} = P_i^AP_j^B\). In other words, the probabilities combine in the same way as two dice rolls would, or the probabilities of any other uncorrelated events.

  1. Show that the entropy of the combined system \(S_{AB}\) is the sum of entropies of the two separate systems considered individually, i.e. \(S_{AB} = S_A+S_B\). This means that entropy is extensive. Use the Gibbs entropy for this computation. You need make no approximation in solving this problem.
  2. Show that if you have \(N\) identical non-interacting systems, their total entropy is \(NS_1\) where \(S_1\) is the entropy of a single system.

Note
In real materials, we treat properties as being extensive even when there are interactions in the system. In this case, extensivity is a property of large systems, in which surface effects may be neglected.

Quiz

60 min.

Free expansion
Students struggle with understanding that entropy can be created. It's an extensive quantity, and is the only one that isn't normally conserved, so that makes it pretty weird. We (professors) don't always realize how very weird this is, and students don't have the vocabulary to explain it to us, and are often afraid to try.