assignment Homework

Power from the Ocean
heat engine efficiency Energy and Entropy 2021 (2 years)

It has been proposed to use the thermal gradient of the ocean to drive a heat engine. Suppose that at a certain location the water temperature is \(22^\circ\)C at the ocean surface and \(4^{o}\)C at the ocean floor.

  1. What is the maximum possible efficiency of an engine operating between these two temperatures?

  2. If the engine is to produce 1 GW of electrical power, what minimum volume of water must be processed every second? Note that the specific heat capacity of water \(c_p = 4.2\) Jg\(^{-1}\)K\(^{-1}\) and the density of water is 1 g cm\(^{-3}\), and both are roughly constant over this temperature range.

assignment Homework

Calculation of \(\frac{dT}{dp}\) for water
Clausius-Clapeyron Thermal and Statistical Physics 2020 Calculate based on the Clausius-Clapeyron equation the value of \(\frac{dT}{dp}\) near \(p=1\text{atm}\) for the liquid-vapor equilibrium of water. The heat of vaporization at \(100^\circ\text{C}\) is \(2260\text{ J g}^{-1}\). Express the result in kelvin/atm.

biotech Experiment

60 min.

Microwave oven Ice Calorimetry Lab
Energy and Entropy 2021 (2 years)

heat entropy water ice thermodynamics

In this remote-friendly activity, students use a microwave oven (and optionally a thermometer) to measure the latent heat of melting for water (and optionally the heat capacity). From these they compute changes in entropy. See also Ice Calorimetry Lab.

assignment Homework

The puddle
differentials Static Fields 2022 (5 years) The depth of a puddle in millimeters is given by \[h=\frac{1}{10} \bigl(1+\sin(\pi xy)\bigr)\] Your path through the puddle is given by \[x=3t \qquad y=4t\] and your current position is \(x=3\), \(y=4\), with \(x\) and \(y\) also in millimeters, and \(t\) in seconds.
  1. At your current position, how fast is the depth of water through which you are walking changing per unit time?
  2. At your current position, how fast is the depth of water through which you are walking changing per unit distance?
  3. FOOD FOR THOUGHT (optional)
    There is a walkway over the puddle at \(x=10\). At your current position, how fast is the depth of water through which you are walking changing per unit distance towards the walkway.

group Small Group Activity

60 min.

Ice Calorimetry Lab

heat entropy water ice

The students will set up a Styrofoam cup with heating element and a thermometer in it. They will measure the temperature as a function of time, and thus the energy transferred from the power supply, from which they compute changes in entropy.

group Small Group Activity

30 min.

A glass of water
Energy and Entropy 2021 (2 years)

thermodynamics intensive extensive temperature volume energy entropy

Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.

assignment Homework

Ice calorimetry lab questions
This question is about the lab we did in class: Ice Calorimetry Lab.
  1. Plot your data I Plot the temperature versus total energy added to the system (which you can call \(Q\)). To do this, you will need to integrate the power. Discuss this curve and any interesting features you notice on it.
  2. Plot your data II Plot the heat capacity versus temperature. This will be a bit trickier. You can find the heat capacity from the previous plot by looking at the slope. \begin{align} C_p &= \left(\frac{\partial Q}{\partial T}\right)_p \end{align} This is what is called the heat capacity, which is the amount of energy needed to change the temperature by a given amount. The \(p\) subscript means that your measurement was made at constant pressure. This heat capacity is actually the total heat capacity of everything you put in the calorimeter, which includes the resistor and thermometer.
  3. Specific heat From your plot of \(C_p(T)\), work out the heat capacity per unit mass of water. You may assume the effect of the resistor and thermometer are negligible. How does your answer compare with the prediction of the Dulong-Petit law?
  4. Latent heat of fusion What did the temperature do while the ice was melting? How much energy was required to melt the ice in your calorimeter? How much energy was required per unit mass? per molecule?
  5. Entropy of fusion The change in entropy is easy to measure for a reversible isothermal process (such as the slow melting of ice), it is just \begin{align} \Delta S &= \frac{Q}{T} \end{align} where \(Q\) is the energy thermally added to the system and \(T\) is the temperature in Kelvin. What is was change in the entropy of the ice you melted? What was the change in entropy per molecule? What was the change in entropy per molecule divided by Boltzmann's constant?
  6. Entropy for a temperature change Choose two temperatures that your water reached (after the ice melted), and find the change in the entropy of your water. This change is given by \begin{align} \Delta S &= \int \frac{{\mathit{\unicode{273}}} Q}{T} \\ &= \int_{t_i}^{t_f} \frac{P(t)}{T(t)}dt \end{align} where \(P(t)\) is the heater power as a function of time and \(T(t)\) is the temperature, also as a function of time.

assignment Homework

Heat of vaporization of ice
Vaporization Heat Thermal and Statistical Physics 2020 The pressure of water vapor over ice is 518 Pa at \(-2^\circ\text{C}\). The vapor pressure of water at its triple point is 611 Pa, at 0.01\(^\circ\text{C}\) (see Estimate in \(\text{J mol}^{-1}\) the heat of vaporization of ice just under freezing. How does this compare with the heat of vaporization of water?

assignment Homework

Directional Derivative

Gradient Sequence

Static Fields 2022 (6 years)

You are on a hike. The altitude nearby is described by the function \(f(x, y)= k x^{2}y\), where \(k=20 \mathrm{\frac{m}{km^3}}\) is a constant, \(x\) and \(y\) are east and north coordinates, respectively, with units of kilometers. You're standing at the spot \((3~\mathrm{km},2~\mathrm{km})\) and there is a cottage located at \((1~\mathrm{km}, 2~\mathrm{km})\). You drop your water bottle and the water spills out.

  1. Plot the function \(f(x, y)\) and also its level curves in your favorite plotting software. Include images of these graphs. Special note: If you use a computer program written by someone else, you must reference that appropriately.
  2. In which direction in space does the water flow?
  3. At the spot you're standing, what is the slope of the ground in the direction of the cottage?
  4. Does your result to part (c) make sense from the graph?

group Small Group Activity

30 min.

Ideal Gas Model

Ideal Gas surfaces thermo

Students consider whether the thermo surfaces reflect the properties of an ideal gas.

assignment Homework

Power Plant on a River
efficiency heat engine carnot Energy and Entropy 2021 (2 years)

At a power plant that produces 1 GW (\(10^{9} \text{watts}\)) of electricity, the steam turbines take in steam at a temperature of \(500^{o}C\), and the waste energy is expelled into the environment at \(20^{o}C\).

  1. What is the maximum possible efficiency of this plant?

  2. Suppose you arrange the power plant to expel its waste energy into a chilly mountain river at \(15^oC\). Roughly how much money can you make in a year by installing your improved hardware, if you sell the additional electricity for 10 cents per kilowatt-hour?

  3. At what rate will the plant expel waste energy into this river?

  4. Assume the river's flow rate is 100 m\(^{3}/\)s. By how much will the temperature of the river increase?

  5. To avoid this “thermal pollution” of the river the plant could instead be cooled by evaporation of river water. This is more expensive, but it is environmentally preferable. At what rate must the water evaporate? What fraction of the river must be evaporated?

assignment Homework

Spin Fermi Estimate
Quantum Fundamentals 2022 The following two problems ask you to make Fermi estimates. In a good Fermi estimate, you start from basic scientific facts you already know or quantities that you can reasonably estimate based on your life experiences and then reason your way to estimate a quantity that you would not be able guess. You may look up useful conversion factors or constants. Use words, pictures, and equations to explain your reasoning:
  1. Imagine that you send a pea-sized bead of silver through a Stern-Gerlach device oriented to measure the z-component of intrinsic spin. Estimate the total z-component of the intrinsic spin of the ball you would measure in the HIGHLY improbable case that every atom is spin up.
  2. Protons, neutrons, and electrons are all spin-1/2 particles. Give a (very crude) order of magnitude estimate of the number of these particles in your body.

group Small Group Activity

30 min.

“Squishability” of Water Vapor (Contour Map)

Thermo Partial Derivatives

Students determine the “squishibility” (an extensive compressibility) by taking \(-\partial V/\partial P\) holding either temperature or entropy fixed.

assignment Homework

Heat capacity of vacuum
Heat capacity entropy Thermal and Statistical Physics 2020
  1. Solve for the heat capacity of a vacuum, given the above, and assuming that photons represent all the energy present in vacuum.
  2. Compare the heat capacity of vacuum at room temperature with the heat capacity of an equal volume of water.

face Lecture

30 min.

Introducing entropy
Contemporary Challenges 2022 (4 years)

entropy multiplicity heat thermodynamics

This lecture introduces the idea of entropy, including the relationship between entropy and multiplicity as well as the relationship between changes in entropy and heat.

group Small Group Activity

30 min.

Heat and Temperature of Water Vapor

Thermo Heat Capacity Partial Derivatives

In this introduction to heat capacity, students determine a derivative that indicates how much the internal energy changes as the temperature changes when volume is held constant.

assignment Homework

Tetrahedron
Static Fields 2022 (6 years)

Using a dot product, find the angle between any two line segments that join the center of a regular tetrahedron to its vertices. Hint: Think of the vertices of the tetrahedron as sitting at the vertices of a cube (at coordinates (0,0,0), (1,1,0), (1,0,1) and (0,1,1)---you may need to build a model and play with it to see how this works!)

assignment Homework

Active transport
Active transport Concentration Chemical potential Thermal and Statistical Physics 2020

The concentration of potassium \(\text{K}^+\) ions in the internal sap of a plant cell (for example, a fresh water alga) may exceed by a factor of \(10^4\) the concentration of \(\text{K}^+\) ions in the pond water in which the cell is growing. The chemical potential of the \(\text{K}^+\) ions is higher in the sap because their concentration \(n\) is higher there. Estimate the difference in chemical potential at \(300\text{K}\) and show that it is equivalent to a voltage of \(0.24\text{V}\) across the cell wall. Take \(\mu\) as for an ideal gas. Because the values of the chemical potential are different, the ions in the cell and in the pond are not in diffusive equilibrium. The plant cell membrane is highly impermeable to the passive leakage of ions through it. Important questions in cell physics include these: How is the high concentration of ions built up within the cell? How is metabolic energy applied to energize the active ion transport?

David adds
You might wonder why it is even remotely plausible to consider the ions in solution as an ideal gas. The key idea here is that the ideal gas entropy incorporates the entropy due to position dependence, and thus due to concentration. Since concentration is what differs between the cell and the pond, the ideal gas entropy describes this pretty effectively. In contrast to the concentration dependence, the temperature-dependence of the ideal gas chemical potential will not be so great.

group Small Group Activity

30 min.

Covariation in Thermal Systems

Thermo Multivariable Functions

Students consider how changing the volume of a system changes the internal energy of the system. Students use plastic graph models to explore these functions.

group Small Group Activity

30 min.

Changes in Internal Energy (Remote)

Thermo Internal Energy 1st Law of Thermodynamics

Warm-Up

Students consider the change in internal energy during three different processes involving a container of water vapor on a stove. Using the 1st Law of Thermodynamics, students reason about how the internal energy would change and then compare this prediction with data from NIST presented as a contour plot.