## Student handout: Quantum Reference Sheet

Central Forces 2023 (6 years)

## 1-D Particle-in-a-box

Eigenstates: \begin{align} \left|{n}\right\rangle &\doteq\sqrt{\frac{2}{L}}\, \sin\frac{n\pi x}{L}\\ n&=\left\{1, 2, 3, \dots\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{n}\right\rangle &=\frac{\pi^2\hbar^2}{2\mu L^2}\, n^2 \left|{n}\right\rangle \\ \end{align}

## Particle-on-a-Ring

Eigenstates: \begin{align} \left|{m}\right\rangle &\doteq\frac{1}{\sqrt{2\pi r_0}}\, e^{im\phi}\\ m&=\left\{\dots 2, 1, 0, -1, -2, \dots\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{m}\right\rangle &=\frac{\hbar^2}{2I}\, m^2 \left|{m}\right\rangle \\ \hat{L}^2\left|{m}\right\rangle &=\hbar^2\, m^2 \left|{m}\right\rangle \\ \hat{L}_z\left|{m}\right\rangle &=\hbar\, m \left|{m}\right\rangle \end{align}

## 1-D Harmonic Oscillator

Eigenstates: \begin{align} \left|{n}\right\rangle &\doteq\left(\frac{m\omega}{\pi\hbar}\right)^{1/4}\frac{1}{\sqrt{2^n n!}} H_n(\xi)\, e^{-\xi^2/2}\\ \xi&=\sqrt{\frac{m\omega}{\hbar}}\, x\\ n&=\left\{0, 1, 2, 3, \dots\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{n}\right\rangle &=\hbar\omega\left(n+\frac{1}{2}\right) \left|{n}\right\rangle \\ \end{align}

## 2-D Particle-in-a-Box

Eigenstates: \begin{align} \left|{mn}\right\rangle &\doteq\sqrt{\frac{2}{L_x}}\sqrt{\frac{2}{L_y}}\, \sin\frac{m\pi x}{L_x}\sin\frac{n\pi y}{L_y}\\ m&=\left\{1, 2, 3, \dots\right\}\\ n&=\left\{1, 2, 3, \dots\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{mn}\right\rangle &=\frac{\pi^2\hbar^2}{2\mu}\, \left(\frac{m^2}{L_x^2}+\frac{n^2}{L_y^2}\right) \left|{mn}\right\rangle \\ \end{align}

## Particle-on-a-Sphere

Eigenstates: \begin{align} \left|{\ell m}\right\rangle &\doteq Y_{\ell}^m(\theta, \phi)\\ &=(-1)^{\frac{m+|m|}{2}}\sqrt{\frac{2\ell+1}{4\pi}\frac{(\ell-m)!}{(\ell+m)!}} \,P_{\ell}^m(\cos\theta)\, e^{im\phi}\\ \ell&=\left\{0, 1, 2, \dots\right\}\\ m&=\left\{\ell, \dots , 0, \dots,-\ell\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{\ell m}\right\rangle &=\frac{\hbar^2}{2I}\, \ell(\ell+1) \left|{\ell m}\right\rangle \\ \hat{L}^2\left|{\ell m}\right\rangle &=\hbar^2\, \ell(\ell+1) \left|{\ell m}\right\rangle \\ \hat{L}_z\left|{\ell m}\right\rangle &=\hbar\, m \left|{\ell m}\right\rangle \end{align}

## 3-D Particle-in-a-Box

Eigenstates: \begin{align} \left|{mnp}\right\rangle &\doteq\sqrt{\frac{2}{L_x}}\sqrt{\frac{2}{L_y}}\sqrt{\frac{2}{L_z}}\, \sin\frac{m\pi x}{L_x}\sin\frac{n\pi y}{L_y}\sin\frac{p\pi z}{L_z}\\ m&=\left\{1, 2, 3, \dots\right\}\\ n&=\left\{1, 2, 3, \dots\right\}\\ p&=\left\{1, 2, 3, \dots\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{mnp}\right\rangle &=\frac{\pi^2\hbar^2}{2\mu}\, \left(\frac{m^2}{L_x^2}+\frac{n^2}{L_y^2}+\frac{p^2}{L_z^2}\right) \left|{mnp}\right\rangle \\ \end{align}

## Hydrogen Atom

Eigenstates: \begin{align} \left|{n\ell m}\right\rangle &\doteq R_{n\ell}(r)\, Y_{\ell}^m(\theta, \phi)\\ &=-\sqrt{\left(\frac{2Z}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n[(n+\ell)!]^3}} \left(\frac{2\rho}{n}\right)^{\ell}\, e^{-\frac{\rho}{n}}\, L_{n+\ell}^{2\ell+1}{\scriptstyle{\left(\frac{2\rho}{n}\right)}} (-1)^{\frac{m+|m|}{2}} \sqrt{\frac{2\ell+1}{4\pi}\frac{(\ell-m)!}{(\ell+m)!}} \,P_{\ell}^m(\cos\theta)\, e^{im\phi}\\ \rho&=\frac{Zr}{a_0}\\ n&=\left\{1, 2, 3,\dots\right\}\\ \ell&=\left\{0, 1, 2, \dots, n-1\right\}\\ m&=\left\{\ell, \dots , 0, \dots,-\ell\right\} \end{align} Eigenvalue Equations: \begin{align} \hat{H}\left|{n\ell m}\right\rangle &=-\frac{1}{2}\left(\frac{Ze^2}{4\pi\epsilon_0}\right)^2 \frac{\mu}{\hbar^2}\,\frac{1}{n^2}\, \left|{n \ell m}\right\rangle \\ &=-13.6 \text{eV}\,\frac{1}{n^2}\, \left|{n \ell m}\right\rangle \\ \hat{L}^2\left|{n \ell m}\right\rangle &=\hbar^2\, \ell(\ell+1) \left|{n \ell m}\right\rangle \\ \hat{L}_z\left|{n \ell m}\right\rangle &=\hbar\, m \left|{n \ell m}\right\rangle \end{align}

Keywords
Learning Outcomes