The Gibbs free energy, \(G\), is given by \begin{align*} G = U + pV - TS. \end{align*}
  1. Find the total differential of \(G\). As always, show your work.
  2. Interpret the coefficients of the total differential \(dG\) in order to find a derivative expression for the entropy \(S\).
  3. From the total differential \(dG\), obtain a different thermodynamic derivative that is equal to \[ \left(\frac{\partial {S}}{\partial {p}}\right)_{T} \]
  • Found in: Energy and Entropy course(s)

group Small Group Activity

30 min.

A glass of water
Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.

group Small Group Activity

5 min.

Constant Lines in the \(u\), \(v\)-Plane

Students are asked to draw lines of constant \(u\) and \(v\) in a \(u,v\) coordinate system. Then, in the same coordinate system, students must draw lines of constant \(x\) and constant \(y\) when

\[x(u,v)=u \] and \[y(u,v)=\frac{1}{2}u+3v. \]

The goal of this problem is to show that once we have maximized the entropy and found the microstate probabilities in terms of a Lagrange multiplier \(\beta\), we can prove that \(\beta=\frac1{kT}\) based on the statistical definitions of energy and entropy and the thermodynamic definition of temperature embodied in the thermodynamic identity.

The internal energy and entropy are each defined as a weighted average over microstates: \begin{align} U &= \sum_i E_i P_i & S &= -k_B\sum_i P_i \ln P_i \end{align}: We saw in clase that the probability of each microstate can be given in terms of a Lagrange multiplier \(\beta\) as \begin{align} P_i &= \frac{e^{-\beta E_i}}{Z} & Z &= \sum_i e^{-\beta E_i} \end{align} Put these probabilities into the above weighted averages in order to relate \(U\) and \(S\) to \(\beta\). Then make use of the thermodynamic identity \begin{align} dU = TdS - pdV \end{align} to show that \(\beta = \frac1{kT}\).

The goal of this problem is to show that once we have maximized the entropy and found the microstate probabilities in terms of a Lagrange multiplier \(\beta\), we can prove that \(\beta=\frac1{kT}\) based on the statistical definitions of energy and entropy and the thermodynamic definition of temperature embodied in the thermodynamic identity.

The internal energy and entropy are each defined as a weighted average over microstates: \begin{align} U &= \sum_i E_i P_i & S &= -k_B\sum_i P_i \ln P_i \end{align} We saw in clase that the probability of each microstate can be given in terms of a Lagrange multiplier \(\beta\) as \begin{align} P_i &= \frac{e^{-\beta E_i}}{Z} & Z &= \sum_i e^{-\beta E_i} \end{align} Put these probabilities into the above weighted averages in order to relate \(U\) and \(S\) to \(\beta\). Then make use of the thermodynamic identity \begin{align} dU = TdS - pdV \end{align} to show that \(\beta = \frac1{kT}\).

  • Found in: Thermal and Statistical Physics course(s)

group Small Group Activity

30 min.

Name the experiment
Student groups design an experiment that measures an assigned partial derivative. In a compare-and-contrast wrap-up, groups report on how they would measure their derivatives.

group Small Group Activity

30 min.

Name the experiment (changing entropy)
Students are placed into small groups and asked to create an experimental setup they can use to measure the partial derivative they are given, in which entropy changes.

group Small Group Activity

30 min.

“Squishability” of Water Vapor (Contour Map)
Students determine the “squishibility” (an extensive compressibility) by taking \(-\partial V/\partial P\) holding either temperature or entropy fixed.

group Small Group Activity

10 min.

Generalized Leibniz Notation
This short small group activity introduces students to the Leibniz notation used for partial derivatives in thermodynamics, in which the variables being held constant are given explicitly. Students are guided to associate variables to their proper categories.
  • Found in: Static Fields, AIMS Maxwell, Surfaces/Bridge Workshop course(s)

face Lecture

5 min.

Energy and Entropy review
This very quick lecture reviews the content taught in Energy and Entropy, and is the first content in Thermal and Statistical Physics.

You are given the following Gibbs free energy: \begin{equation*} G=-k T N \ln \left(\frac{a T^{5 / 2}}{p}\right) \end{equation*} where \(a\) is a constant (whose dimensions make the argument of the logarithm dimensionless).

  1. Compute the entropy.

  2. Work out the heat capacity at constant pressure \(C_p\).

  3. Find the connection among \(V\), \(p\), \(N\), and \(T\), which is called the equation of state (Hint: find the volume as a partial derivative of the Gibbs free energy).

  4. Compute the internal energy \(U\).

  • Found in: Energy and Entropy course(s)

Consider the diagram of \(T\) vs \(V\) for several different constant values of \(p\).

  1. Translate this diagram to a \(p\) vs \(V\) w/ constant \(T\) graph, including the point \(A\). Complete your graph by hand and make a fairly accurate sketch by printing out the attached grid or in some other way making nice square axes with appropriate tick marks.

  2. Are the lines that you drew straight or curved? What feature of the \(TV\) graph would have to change to change this result?

  3. Sketch the line of constant temperature that passes through the point \(A\).

  4. What are the values of all the thermodynamic variables associated with the point A?

  • Found in: Energy and Entropy course(s)

face Lecture

30 min.

Review of Thermal Physics
These are notes, essentially the equation sheet, from the final review session for Thermal and Statistical Physics.
Use the NIST web site “Thermophysical Properties of Fluid Systems” to answer the following questions. This site is an excellent resource for finding experimentally measured properties of fluids.
  1. Find the partial derivatives \[\left(\frac{\partial {S}}{\partial {T}}\right)_{p}\] \[\left(\frac{\partial {S}}{\partial {T}}\right)_{V}\] where \(p\) is the pressure, \(V\) is the volume, \(S\) is the entropy, and \(T\) is the temperature. Please find these derivatives for one gram of methanol at one atmosphere of pressure and at room temperature.
  2. Why does it take only two variables to define the state?
  3. Why are the derivatives above different?
  4. What do the words isobaric, isothermal, and isochoric mean?
  • Found in: Energy and Entropy course(s)
A short lecture introducing the idea that most of the energy loss when driving is going into the kinetic energy of the air.

biotech Experiment

60 min.

Microwave oven Ice Calorimetry Lab
In this remote-friendly activity, students use a microwave oven (and optionally a thermometer) to measure the latent heat of melting for water (and optionally the heat capacity). From these they compute changes in entropy. See also Ice Calorimetry Lab.

face Lecture

30 min.

Introducing entropy
This lecture introduces the idea of entropy, including the relationship between entropy and multiplicity as well as the relationship between changes in entropy and heat.

group Small Group Activity

60 min.

Ice Calorimetry Lab
The students will set up a Styrofoam cup with heating element and a thermometer in it. They will measure the temperature as a function of time, and thus the energy transferred from the power supply, from which they compute changes in entropy.

group Small Group Activity

30 min.

Heat and Temperature of Water Vapor
In this introduction to heat capacity, students determine a derivative that indicates how much the internal energy changes as the temperature changes when volume is held constant.

face Lecture

30 min.

Differentials
  • Found in: Static Fields, Surfaces/Bridge Workshop course(s)