title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Small Group Activity

30 min.

Changes in Internal Energy
Students consider the change in internal energy during three different processes involving a container of water vapor on a stove. Using the 1st Law of Thermodynamics, students reason about how the internal energy would change and then compare this prediction with data from NIST presented as a contour plot.

Small Group Activity

30 min.

Name the experiment (changing entropy)
Students are placed into small groups and asked to create an experimental setup they can use to measure the partial derivative they are given, in which entropy changes.

Small Group Activity

30 min.

Name the experiment
Student groups design an experiment that measures an assigned partial derivative. In a compare-and-contrast wrap-up, groups report on how they would measure their derivatives.

Small Group Activity

30 min.

A glass of water
Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.

Lecture

5 min.

Energy and Entropy review
This very quick lecture reviews the content taught in https://paradigms.oregonstate.edu/courses/ph423, and is the first content in https://paradigms.oregonstate.edu/courses/ph441.
In this remote-friendly activity, students use a microwave oven (and optionally a thermometer) to measure the latent heat of melting for water (and optionally the heat capacity). From these they compute changes in entropy. See also Ice Calorimetry Lab.

Lecture

30 min.

Introducing entropy
This lecture introduces the idea of entropy, including the relationship between entropy and multiplicity as well as the relationship between changes in entropy and heat.

Lecture

120 min.

Work, Heat, and cycles
These lecture notes covering week 8 of https://paradigms.oregonstate.edu/courses/ph441 include a small group activity in which students derive the Carnot efficiency.

Lecture

120 min.

Phase transformations
These lecture notes from the ninth week of https://paradigms.oregonstate.edu/courses/ph441 cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.

Lecture

30 min.

Review of Thermal Physics
These are notes, essentially the equation sheet, from the final review session for https://paradigms.oregonstate.edu/courses/ph441.

You are given the following Gibbs free energy: \begin{equation*} G=-k T N \ln \left(\frac{a T^{5 / 2}}{p}\right) \end{equation*} where \(a\) is a constant (whose dimensions make the argument of the logarithm dimensionless).

  1. Compute the entropy.

  2. Work out the heat capacity at constant pressure \(C_p\).

  3. Find the connection among \(V\), \(p\), \(N\), and \(T\), which is called the equation of state (Hint: find the volume as a partial derivative of the Gibbs free energy).

  4. Compute the internal energy \(U\).

The Gibbs free energy, \(G\), is given by \begin{align*} G = U + pV - TS. \end{align*}
  1. Find the total differential of \(G\). As always, show your work.
  2. Interpret the coefficients of the total differential \(dG\) in order to find a derivative expression for the entropy \(S\).
  3. From the total differential \(dG\), obtain a different thermodynamic derivative that is equal to \[ \left(\frac{\partial {S}}{\partial {p}}\right)_{T} \]

Small Group Activity

10 min.

Generalized Leibniz Notation
This short small group activity introduces students to the Leibniz notation used for partial derivatives in thermodynamics, in which the variables being held constant are given explicitly. Students are guided to associate variables to their proper categories.
  • Found in: Static Fields, AIMS Maxwell, Surfaces/Bridge Workshop, Problem-Solving course(s)