Consider a very light particle of mass \(\mu\) scattering from a very heavy, stationary particle of mass \(M\). The force between the two particles is a repulsive Coulomb force \(\frac{k}{r^2}\). The impact parameter \(b\) in a scattering problem is defined to be the distance which would be the closest approach if there were no interaction (See Figure). The initial velocity (far from the scattering event) of the mass \(\mu\) is \(\vec v_0\). Answer the following questions about this situation in terms of \(k\), \(M\), \(\mu\), \(\vec v_0\), and \(b\). (It is not necessarily wise to answer these questions in order.)

  1. What is the initial angular momentum of the system?
  2. What is the initial total energy of the system?
  3. What is the distance of closest approach \(r_{\rm{min}}\) with the interaction?
  4. Sketch the effective potential.
  5. What is the angular momentum at \(r_{\rm{min}}\)?
  6. What is the total energy of the system at \(r_{\rm{min}}\)?
  7. What is the radial component of the velocity at \(r_{\rm{min}}\)?
  8. What is the tangential component of the velocity at \(r_{\rm{min}}\)?
  9. What is the value of the effective potential at \(r_{\rm{min}}\)?
  10. For what values of the initial total energy are there bound orbits?
  11. Using your results above, write a short essay describing this type of scattering problem, at a level appropriate to share with another Paradigm student.

Recall that, if you take an infinite number of terms, the power series for \(\sin z\) and the function itself \(f(z)=\sin z\) are equivalent representations of the same thing for all real numbers \(z\), (in fact, for all complex numbers \(z\)). This is what it means for the power series to “converge” for all \(z\). Not all power series converge for all values of the argument of the function. More commonly, a power series is only a valid, equivalent representation of a function for some more restricted values of \(z\), EVEN IF YOUR KEEP AN INFINITE NUMBER OF TERMS. The technical name for this idea is convergence--the series only "converges" to the value of the function on some restricted domain, called the “interval” or “region of convergence.”

Find the power series for the function \(f(z)=\frac{1}{1+z^2}\). Then, using the Geogebra applet from class as a model, or some other computer algebra system like Mathematica or Maple, explore the convergence of this series. Where does your series for this new function converge? Can you tell anything about the region of convergence from the graphs of the various approximations? Print out a plot and write a brief description (a sentence or two) of the region of convergence. You may need to include a lot of terms to see the effect of the region of convergence. You may also need to play with the values of \(z\) that you plot. Keep adding terms until you see a really strong effect!

Note: As a matter of professional ettiquette (or in some cases, as a legal copyright requirement), if you use or modify a computer program written by someone else, you should always acknowledge that fact briefly in whatever you write up. Say something like: “This calculation was based on a (name of software package) program titled (title) originally written by (author) copyright (copyright date).”

Write out the first four nonzero terms in the series:

  1. \[\sum\limits_{n=0}^\infty \frac{1}{n!}\]

  2. \[\sum\limits_{n=1}^\infty \frac{(-1)^n}{n!}\]
  3. \begin{equation} \sum\limits_{n=0}^\infty {(-2)^{n}\,\theta^{2n}} \end{equation}

Write (a good guess for) the following series using sigma \(\left(\sum\right)\) notation. (If you only know a few terms of a series, you don't know for sure how the series continues.)

  1. \[1 - 2\,\theta^2 + 4\,\theta^4 - 8\,\theta^6 +\,\dots\]

  2. \[\frac14 - \frac19 + \frac{1}{16} - \frac{1}{25}+\,\dots\]


Solar Sail

The first spacecraft using a solar sail for propulsion was launched in 2010. Its name is IKAROS. It has a square sail with dimensions 14 m x 14 m. Assume that the sail's mass is 2 kg and it reflects 100% of incident photons. When IKAROS is loaded with other equipment, the total mass of the vehicle is 10 kg. The sail is orientated to receive maximum light from the sun.

  1. Calculate the momentum of the photons that come from the sun and hit the solar sail in 1 second. Assume a solar intensity of 1300 J/(s.m2).
  2. How much momentum will be transferred from solar photons to IKAROS in one day? Give a numerical answer in units of kg.m/s (assume a constant solar intensity).
  3. What is the change in the solar sail's velocity in one day? (assume that acceleration is only caused by sunlight).

Find the surface area of a sphere using cylindrical coordinates. Note: The fact that you can describe spheres nicely in cylindrical coordinates underlies the equal area cylindrical map project that allows you to draw maps of the earth where everything has the correct area, even if the shapes seem distorted. If you want to plot something like population density, you need an area preserving map projection.

One way to write volume charge densities without using piecewise functions is to use step \((\Theta)\) or \(\delta\) functions. If you need to review this, see the following link in the math-physics book: https://paradigms.oregonstate.edu

Consider a spherical shell with charge density \(\rho (\vec{r})=\alpha3e^{(k r)^3}\) between the inner radius \(a\) and the outer radius \(b\). The charge density is zero everywhere else. Use step functions to write this charge density as a single function valid everywhere in space.

The following two problems ask you to make Fermi estimates. In a good Fermi estimate, you start from basic scientific facts you already know or quantities that you can reasonably estimate based on your life experiences and then reason your way to estimate a quantity that you would not be able guess. You may look up useful conversion factors or constants. Use words, pictures, and equations to explain your reasoning:
  1. Imagine that you send a pea-sized bead of silver through a Stern-Gerlach device oriented to measure the z-component of intrinsic spin. Estimate the total z-component of the intrinsic spin of the ball you would measure in the HIGHLY improbable case that every atom is spin up.
  2. Protons, neutrons, and electrons are all spin-1/2 particles. Give a (very crude) order of magnitude estimate of the number of these particles in your body.
The Pauli spin matrices \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\) are defined by: \[\sigma_x= \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \hspace{2em} \sigma_y= \begin{pmatrix} 0&-i\\ i&0\\ \end{pmatrix} \hspace{2em} \sigma_z= \begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \] These matrices are related to angular momentum in quantum mechanics.
  1. By drawing pictures, convince yourself that the arbitrary unit vector \(\hat n\) can be written as: \[\hat n=\sin\theta\cos\phi\, \hat x +\sin\theta\sin\phi\,\hat y+\cos\theta\,\hat z\] where \(\theta\) and \(\phi\) are the parameters used to describe spherical coordinates.
  2. Find the entries of the matrix \(\hat n\cdot\vec \sigma\) where the “matrix-valued-vector” \(\vec \sigma\) is given in terms of the Pauli spin matrices by \[\vec\sigma=\sigma_x\, \hat x + \sigma_y\, \hat y+\sigma_z\, \hat z\] and \(\hat n\) is given in part (a) above.
A spin-3/2 particle initially is in the state \(|\psi(0)\rangle = |\frac{1}{2}\rangle\). This particle is placed in an external magnetic field so that the Hamiltonian is proportional to the \(\hat{S}_x\) operator, \(\hat{H} = \alpha \hat{S}_x \doteq \frac{\alpha\hbar}{2}\begin{pmatrix} 0 & \sqrt{3} & 0 & 0\\ \sqrt{3} & 0 & 2 & 0\\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}\)
  1. Find the energy eigenvalues and energy eigenstates for the system.
  2. Find \(|\psi(t)\rangle\).
  3. List the outcomes of all possible measurements of \(S_x\) and find their probabilities. Explicitly identify any probabilities that depend on time.
  4. List the outcomes of all possible measurements of \(S_z\) and find their probabilities. Explicitly identify any probabilities that depend on time.
The operator \(\hat{S}_x\) for spin-1 may be written as: defined by: \[\hat{S}_x=\frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0&1&0\\ 1&0&1 \\ 0&1&0 \\ \end{pmatrix} \]
  1. Find the eigenvalues and eigenvectors of this matrix. Write the eigenvectors as both matrices and kets.
  2. Confirm that the eigenstates you found give probabilities that match your expectation from the Spins simulation for spin-1 particles.
Two electrons are placed in a magnetic field in the \(z\)-direction. The initial state of the first electron is \(\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ i\\ \end{pmatrix}\) and the initial state of the second electron is \(\frac{1}{2}\begin{pmatrix} \sqrt{3}\\ 1\\ \end{pmatrix}\).
  1. Find the probabilty of measuring each particle to have spin-up in the \(x\)-, \(y\)-, and \(z\)-directions at \(t = 0\).
  2. Find the probabilty of measuring each particle to have spin-up in the \(x\)-, \(y\)-, and \(z\)-directions at some later time \(t\).
  3. Calculate the expectation values for \(S_x\), \(S_y\), and \(S_z\) for each particle as functions of time.
  4. Are there any times when all the probabilities you have calculated are the same as they were at \(t = 0\)?
The spring constant \(k\) for a one-dimensional spring is defined by: \[F=k(x-x_0).\] Discuss briefly whether each of the variables in this equation is extensive or intensive.


Sum Shift

In each of the following sums, shift the index \(n\rightarrow n+2\). Don't forget to shift the limits of the sum as well. Then write out all of the terms in the sum (if the sum has a finite number of terms) or the first five terms in the sum (if the sum has an infinite number of terms) and convince yourself that the two different expressions for each sum are the same:

  1. \begin{equation} \sum_{n=0}^3 n \end{equation}
  2. \begin{equation} \sum_{n=1}^5 e^{in\phi} \end{equation}
  3. \begin{equation} \sum_{n=0}^{\infty} a_n n(n-1)z^{n-2} \end{equation}

Write out the terms in the following sums that have the lowest energy. Stop when you have at least 9 terms, but only stop at some point that is logical, given the symmetries and degeneracies. Briefly explain why you chose to stop when you did. You may have to guess what system you are working from the form of the sum and which eigenvalue(s) determine the energy. You may assume that low energies correspond to eigenvalues near zero. Clearly state any assumptions that you make. You may use bra/ket notation in your solutions. (If these directions are unclear, check out the solutions below for some examples.)
  1. \[\sum_{m=-\infty}^{\infty} c_m e^{im\phi}\]
  2. \[\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} c_{mn} \sin\left(\frac{m\pi x}{L_x}\right)\sin\left(\frac{n\pi y}{L_y}\right)\]
  3. \[\sum_{n=1}^{\infty}\sum_{\ell=0}^{n-1}\sum_{m=-\ell}^{\ell} c_{n \ell m} \left|{n, \ell, m}\right\rangle \]

(Numbers and Units) Purpose: Gain experience with the relative sizes of objects and distances in the Solar System. Gain experience with realistic reduced masses.

Calculate the following quantities:

  1. Find \({\vec r}_{\rm sun}-{\vec r}_{\rm cm}\) and \(\mu\) for the Sun-Earth system. Compare \({\vec r}_{\rm sun}-{\vec r}_{\rm cm}\) to the radius of the Sun and to the distance from the Sun to the Earth. Compare \(\mu\) to the mass of the Sun and the mass of the Earth.
  2. Repeat the calculation for the Sun-Jupiter system.

Calculate the temperature of the surface of the Earth on the assumption that as a black body in thermal equilibrium it reradiates as much thermal radiation as it receives from the Sun. Assume also that the surface of the Earth is a constant temperature over the day-night cycle. Use the sun's surface temperature \(T_{\odot}=5800\text{K}\); and the sun's radius \(R_{\odot}=7\times 10^{10}\text{cm}\); and the Earth-Sun distance of \(1.5\times 10^{13}\text{cm}\).

Find the course syllabus and schedule on Canvas. Read through them carefully and bring your questions to the second day of class.

Instructions for 2022: You will need to complete this assignment in a 15 minute appointment on Zoom or in person with one of the members of the teaching team between 1/21 and 10 pm on 1/26. Here is a link to a sign-up page.

You are required to watch a sample video for how to make symmetry arguments here. As demonstrated in the video you should bring with you to the meeting a cylinder, an observer, and a vector.

Use good symmetry arguments to find the possible direction for the electric field due to a charged wire. Also, use good symmetry arguments to find the possible functional dependence of the electric field due to a charged wire. Rather than writing this up to turn in, you should find a member of the teaching team and make the arguments to them verbally.

Show that \begin{align} f(\mu+\delta) &= 1 - f(\mu-\delta) \end{align} This means that the probability that an orbital above the Fermi level is occupied is equal to the probability an orbital the same distance below the Fermi level being empty. These unoccupied orbitals are called holes.

Using a dot product, find the angle between any two line segments that join the center of a regular tetrahedron to its vertices. Hint: Think of the vertices of the tetrahedron as sitting at the vertices of a cube (at coordinates (0,0,0), (1,1,0), (1,0,1) and (0,1,1)---you may need to build a model and play with it to see how this works!)


The Cube
Find the angle between the diagonal of a cube (connecting opposite corners) and the diagonal of one of its faces (connecting opposite corners of one square face).

The electrostatic potential due to a point charge at the origin is given by: \begin{equation} V=\frac{1}{4\pi\epsilon_0} \frac{q}{r} \end{equation}

  1. Find the electric field due to a point charge at the origin as a gradient in rectangular coordinates.
  2. Find the electric field due to a point charge at the origin as a gradient in spherical coordinates.
  3. Find the electric field due to a point charge at the origin as a gradient in cylindrical coordinates.


The Path
You are climbing a hill along the steepest path, whose slope at your current location is \(1\over5\). There is another path branching off at an angle of \(30^\circ\) (\(\pi\over6\)). How steep is it?


The puddle
The depth of a puddle in millimeters is given by \[h=\frac{1}{10} \bigl(1+\sin(\pi xy)\bigr)\] Your path through the puddle is given by \[x=3t \qquad y=4t\] and your current position is \(x=3\), \(y=4\), with \(x\) and \(y\) also in millimeters, and \(t\) in seconds.
  1. At your current position, how fast is the depth of water through which you are walking changing per unit time?
  2. At your current position, how fast is the depth of water through which you are walking changing per unit distance?
  3. FOOD FOR THOUGHT (optional)
    There is a walkway over the puddle at \(x=10\). At your current position, how fast is the depth of water through which you are walking changing per unit distance towards the walkway.

The function \(\theta(x)\) (the Heaviside or unit step function) is a defined as: \begin{equation} \theta(x) =\begin{cases} 1 & \textrm{for}\; x>0 \\ 0 & \textrm{for}\; x<0 \end{cases} \end{equation} This function is discontinuous at \(x=0\) and is generally taken to have a value of \(\theta(0)=1/2\).

Make sketches of the following functions, by hand, on axes with the same scale and domain. Briefly describe, using good scientific writing that includes both words and equations, the role that the number two plays in the shape of each graph: \begin{align} y &= \theta (x)\\ y &= 2+\theta (x)\\ y &= \theta(2+x)\\ y &= 2\theta (x)\\ y &= \theta (2x) \end{align}

For each case below, find the total charge.

  1. A positively charged (dielectric) spherical shell of inner radius \(a\) and outer radius \(b\) with a spherically symmetric internal charge density \begin{equation} \rho(\vec{r})=3\alpha\, e^{(kr)^3} \end{equation}
  2. A positively charged (dielectric) cylindrical shell of inner radius \(a\) and outer radius \(b\) with a cylindrically symmetric internal charge density \begin{equation} \rho(\vec{r})=\alpha\, \frac{1}{s}\, e^{ks} \end{equation}

A current \(I\) flows down a cylindrical wire of radius \(R\).

  1. If it is uniformly distributed over the surface, give a formula for the surface current density \(\vec K\).
  2. If it is distributed in such a way that the volume current density, \(|\vec J|\), is inversely proportional to the distance from the axis, give a formula for \(\vec J\).

  1. Current \(I\) flows down a wire with square cross-section. The length of the square side is \(L\). If the current is uniformly distributed over the entire area, find the current density .
  2. If the current is uniformly distributed over the outer surface only, find the current density .

Consider the diagram of \(T\) vs \(V\) for several different constant values of \(p\).

  1. Translate this diagram to a \(p\) vs \(V\) w/ constant \(T\) graph, including the point \(A\). Complete your graph by hand and make a fairly accurate sketch by printing out the attached grid or in some other way making nice square axes with appropriate tick marks.

  2. Are the lines that you drew straight or curved? What feature of the \(TV\) graph would have to change to change this result?

  3. Sketch the line of constant temperature that passes through the point \(A\).

  4. What are the values of all the thermodynamic variables associated with the point A?

(Straightforward algebra) Purpose: Discover the change of variables that allows you to go from the solution to the reduced mass system back to the original system. Practice solving systems of two linear equations.

For systems of particles, we used the formulas \begin{align} \vec{R}_{cm}&=\frac{1}{M}\left(m_1\vec{r}_1+m_2\vec{r}_2\right) \nonumber\\ \vec{r}&=\vec{r}_2-\vec{r}_1 \label{cm} \end{align} to switch from a rectangular coordinate system that is unrelated to the system to coordinates adapted to the center-of-mass. After you have solved the equations of motion in the center-of-mass coordinates, you may want to transform back to the original coordinate system. Find the inverse transformation, i.e. solve for: \begin{align} \vec{r}_1&=\\ \vec{r}_2&= \end{align} Hint: The system of equations (\ref{cm}) is linear, i.e. each variable is to the first power, even though the variables are vectors. In this case, you can use all of the methods you learned for solving systems of equations while keeping the variables vector valued, i.e. you can safely ignore the fact that the \(\vec{r}\)s are vectors while you are doing the algebra as long as you don't divide by a vector.

(Sketch limiting cases) Purpose: For two central force systems that share the same reduced mass system, discover how the motions of the original systems are the same and different.

The figure below shows the position vector \(\vec r\) and the orbit of a “fictitious” reduced mass \(\mu\).

  1. Suppose \(m_1=m_2\), Sketch the position vectors and orbits for \(m_1\) and \(m_2\) corresponding to \(\vec{r}\). Describe a common physics example of central force motion for which \(m_1=m_2\).
  2. Repeat, for \(m_2>m_1\).

With the Spins simulation set for a spin 1/2 system, measure the probabilities of all the possible spin components for each of the unknown initial states \(\left|{\psi_3}\right\rangle \) and \(\left|{\psi_4}\right\rangle \).
  1. Use your measured probabilities to find each of the unknown states as a linear superposition of the \(S_z\)-basis states \(\left|{+}\right\rangle \) and \(\left|{-}\right\rangle \).
  2. Articulate a Process: Write a set of general instructions that would allow another student in next year's class to find an unknown state from measured probabilities.
  3. Compare Theory with Experiment: Design an experiment that will allow you to test whether your prediction for each of the unknown states is correct. Describe your experiment here, clearly but succinctly, as if you were writing it up for a paper. Do the experiment and discuss your results.
  4. Make a Conceptual Connection: In general, can you determine a quantum state with spin-component probability measurements in only two spin-component-directions? Why or why not?
The question is meant to get you used to using the Canvas Discussion Board. Please go to the course Canvas page and find the Discussions tab on the left hand side. Find the Discussion titled Random and add one of the following:
  1. A random physics fact.
  2. One thing you like about physics.
  3. One question you have for Jeff.

You are given the following Gibbs free energy: \begin{equation*} G=-k T N \ln \left(\frac{a T^{5 / 2}}{p}\right) \end{equation*} where \(a\) is a constant (whose dimensions make the argument of the logarithm dimensionless).

  1. Compute the entropy.

  2. Work out the heat capacity at constant pressure \(C_p\).

  3. Find the connection among \(V\), \(p\), \(N\), and \(T\), which is called the equation of state (Hint: find the volume as a partial derivative of the Gibbs free energy).

  4. Compute the internal energy \(U\).

Task: Draw a right triangle. Put a circle around the right angle, that is, the angle that is \(\frac\pi2\) radians.

Preparing your submission:

  • Complete the assignment using your choice of technology. You may write your answers on paper, write them electronically (for instance using xournal), or typeset them (for instance using LaTeX).
  • If using software, please export to PDF. If writing by hand, please scan your work using the AIMS scanner if possible. You can also use a scanning app; Gradescope offers advice and suggested apps at this URL. The preferred format is PDF; photos or JPEG scans are less easy to read (and much larger), and should be used only if no alternative is available.)
  • Please make sure that your file name includes your own name and the number of the assignment, such as "Tevian2.pdf."

Using Gradescope: We will arrange for you to have a Gradescope account, after which you should receive access instructions directly from them. To submit an assignment:

  1. Navigate to https://paradigms.oregonstate.edu and login
  2. Select the appropriate course, such as "AIMS F21". (There will likely be only one course listed.)
  3. Select the assignment called "Sample Assignment"
  4. Follow the instructions to upload your assignment. (The preferred format is PDF.)
  5. You will then be prompted to associate submitted pages with problem numbers by selecting pages on the right and questions on the left. (In this assignment, there is only one of each.) You may associate multiple problems with the same page if appropriate.
  6. When you are finished, click "Submit"
  7. After the assignments have been marked, you can log back in to see instructor comments.

Consider a phase transformation between either solid or liquid and gas. Assume that the volume of the gas is way bigger than that of the liquid or solid, such that \(\Delta V \approx V_g\). Furthermore, assume that the ideal gas law applies to the gas phase. Note: this problem is solved in the textbook, in the section on the Clausius-Clapeyron equation.
  1. Solve for \(\frac{dp}{dT}\) in terms of the pressure of the vapor and the latent heat \(L\) and the temperature.

  2. Assume further that the latent heat is roughly independent of temperature. Integrate to find the vapor pressure itself as a function of temperature (and of course, the latent heat).

Sketch each of the vector fields below.
  1. \(\boldsymbol{\vec K}=s\,\boldsymbol{\hat s}\)
  2. \(\boldsymbol{\vec L}=\frac1s\boldsymbol{\hat\phi}\)
  3. \(\boldsymbol{\vec M}=\sin\phi\,\boldsymbol{\hat s}\)
  4. \(\boldsymbol{\vec N}=\sin(2\pi s)\,\boldsymbol{\hat\phi}\)
Sketch each of the vector fields below.
  1. \(\boldsymbol{\vec F} =-y\,\boldsymbol{\hat x} + x\,\boldsymbol{\hat y}\)
  2. \(\boldsymbol{\vec G} = x\,\boldsymbol{\hat x} + y\,\boldsymbol{\hat y}\)
  3. \(\boldsymbol{\vec H} = y\,\boldsymbol{\hat x} + x\,\boldsymbol{\hat y}\)



Let \begin{align} \boldsymbol{\vec a} &= \boldsymbol{\hat x}-3\boldsymbol{\hat y}-\boldsymbol{\hat z}\\ \boldsymbol{\vec b} &= \boldsymbol{\hat x}+\boldsymbol{\hat y}+2\boldsymbol{\hat z}\\ {\boldsymbol{\vec c}} &= -2\boldsymbol{\hat x}-\boldsymbol{\hat y}+\boldsymbol{\hat z}\\ \boldsymbol{\vec d} &= -\boldsymbol{\hat x}-\boldsymbol{\hat y}+\boldsymbol{\hat z} \end{align}

Which pairs (if any) of these vectors

  1. Are perpendicular?
  2. Are parallel?
  3. Have an angle less than \(\pi/2\) between them?
  4. Have an angle of more than \(\pi/2\) between them?

Using either this Geogebra applet or this Mathematica notebook, explore the wave functions on a ring. (Note: The Geogebra applet may be a little easier to use and understand and is accessible if you don't have access to Mathematica, but it is more limited in the wave functions that you can represent. Also, the animation is pretty jumpy in some browsers, especially Firefox. Imagine that the motion is smooth.)
  1. Look at graphs of the following states \begin{align} \Phi_1(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +\left|{-2}\right\rangle )\\ \Phi_2(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle -\left|{-2}\right\rangle )\\ \Phi_3(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +i\left|{-2}\right\rangle ) \end{align} Write a short description of how these states differ from each other.
  2. Find a state for which the probability density does not depend on time. Write the state in both ket and wave function notation. These are called stationary states. Generalize your result to give a characterization of the set of all possible states that are stationary states.
  3. Find a state that is right-moving. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are right-moving.
  4. Find a state that is a standing wave. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are standing waves.

Sketch the volume charge density: \begin{equation} \rho (x,y,z)=c\,\delta (x-3) \end{equation}

You have a charge distribution on the \(x\)-axis composed of two point charges: one with charge \(+3q\) located at \(x=-d\) and the other with charge \(-q\) located at \(x=+d\).

  1. Sketch the charge distribution.
  2. Write an expression for the volume charge density \(\rho (\vec{r})\) everywhere in space.

Consider the following wave functions (over all space - not the infinite square well!):

\(\psi_a(x) = A e^{-x^2/3}\)

\(\psi_b(x) = B \frac{1}{x^2+2} \)

\(\psi_c(x) = C \;\mbox{sech}\left(\frac{x}{5}\right)\) (“sech” is the hyperbolic secant function.)

In each case:

  1. normalize the wave function,
  2. plot the wave function using Mathematica or other computer plotting tool (be sure to include the code you used and label your plots/axes appropriately),
  3. find the probability that the particle is measured to be in the range \(0<x<1\).

The following are 3 different representations for the \(\textbf{same}\) state on a quantum ring for \(r_0=1\) \begin{equation} \left|{\Phi_a}\right\rangle = i\sqrt{\frac{ 2}{12}}\left|{3}\right\rangle - \sqrt{\frac{ 1}{12}}\left|{1}\right\rangle +\sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}}\left|{0}\right\rangle -i\sqrt{\frac{ 2}{ 12}}\left|{-1}\right\rangle +\sqrt{\frac{ 4}{12}}\left|{-3}\right\rangle \end{equation} \begin{equation} \left| \Phi_b\right\rangle \doteq \left( \begin{matrix} \vdots \\ i\sqrt{\frac{ 2}{12}}\\ 0 \\ -\sqrt{\frac{ 1}{12}} \\ \sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}} \\ -i\sqrt{\frac{ 2}{12}}\\ 0 \\ \sqrt{\frac{4}{12} }\\ \vdots \end{matrix}\right) \begin{matrix} \leftarrow m=0 \end{matrix} \end{equation} \begin{equation} \Phi_c(\phi) \doteq \sqrt{\frac{1}{24 \pi}} \left( i\sqrt{2}e^{i 3 \phi} -e^{i\phi} +\sqrt{3}e^{i\frac{\pi}{4}} -i \sqrt{2} e^{-i\phi} + \sqrt{4}e^{-i 3 \phi} \right) \end{equation}

  1. With each representation of the state given above, explicitly calculate the probability that \(L_z=-1\hbar\). Then, calculate all other non-zero probabilities for values of \(L_z\) with a method/representation of your choice.
  2. Explain how you could be sure you calculated all of the non-zero probabilities.
  3. If you measured the \(z\)-component of angular momentum to be \(3\hbar\), what would the state of the particle be immediately after the measurement is made?
  4. With each representation of the state given above, explicitly calculate the probability that \(E=\frac{9}{2}\frac{\hbar^2}{I}\). Then, calculate all other non-zero probabilities for values of \(E\) with a method of your choice.
  5. If you measured the energy of the state to be \(\frac{9}{2}\frac{\hbar^2}{I}\), what would the state of the particle be immediately after the measurement is made?



In a solid, a free electron doesn't see” a bare nuclear charge since the nucleus is surrounded by a cloud of other electrons. The nucleus will look like the Coulomb potential close-up, but be screened” from far away. A common model for such problems is described by the Yukawa or screened potential: \begin{equation} U(r)= -\frac{k}{r} e^{-\frac{r}{\alpha}} \end{equation}

  1. Graph the potential, with and without the exponential term. Describe how the Yukawa potential approximates the “real” situation. In particular, describe the role of the parameter \(\alpha\).
  2. Draw the effective potential for the two choices \(\alpha=10\) and \(\alpha=0.1\) with \(k=1\) and \(\ell=1\). For which value(s) of \(\alpha\) is there the possibility of stable circular orbits?

Find the differential of each of the following expressions; zap each of the following with \(d\):

  1. \[f=3x-5z^2+2xy\]

  2. \[g=\frac{c^{1/2}b}{a^2}\]

  3. \[h=\sin^2(\omega t)\]

  4. \[j=a^x\]

  5. \[k=5 \tan\left(\ln{\left(\frac{V_1}{V_2}\right)}\right)\]